Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
3 crédits
22.5 h + 22.5 h
Q2
Enseignants
Gaigneaux Eric (coordinateur); Gonze Xavier;
Langue
d'enseignement
d'enseignement
Français
Préalables
LBIR1200 Mathématiques générales II (ou un cours équivalent) et LBIR1210 Physique générale (II) (ou un cours équivalent).
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
Thèmes abordés :
· Mécanique quantique des atomes et des molécules : introduction au formalisme de la mécanique quantique, structure des atomes et des molécules, nature de la liaison chimique.
· Spectroscopie : principe des différents grands types de spectroscopie dans le cadre de la chimie.
· Mécanique quantique des atomes et des molécules : introduction au formalisme de la mécanique quantique, structure des atomes et des molécules, nature de la liaison chimique.
· Spectroscopie : principe des différents grands types de spectroscopie dans le cadre de la chimie.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
AA : Au terme du cours LBIR1340, l'étudiant sera capable de : · d'énoncer et d'expliquer les concepts de base de la mécanique quantique, et d'appliquer ces concepts aux atomes et aux molécules diatomiques; · d'énoncer et d'expliquer les caractéristiques fondamentales des valeurs et fonctions propres de l'équation de Schrödinger pour une série de potentiels simples et d'utiliser la séparation des variables pour analyser le cas à plusieurs variables; · d'expliquer la constitution du tableau périodique des éléments et la formation des orbitales moléculaires et de la liaison chimique de molécules diatomiques, à partir d'orbitales atomiques ; · de résoudre des problèmes simples liés aux calculs de valeurs moyennes d'opérateurs, de densité de probabilité, de spectres d'absorption et d'émission, d'énergie de formation et d'états excités (électroniques, vibrationnels ou rotationnels) de systèmes atomiques et moléculaires ; · de distinguer les spectroscopies d'absorption et d'émission ; · d'associer le spectre d'un composé donné à la technique spectroscopique l'ayant généré et en retirer les informations utiles ; · de prédire l'allure générale (nombre de pics, distance entre les pics, gamme d'énergie) du spectre attendu pour un échantillon analysé en spectroscopies rotationnelle, vibrationnelles, des photoélectrons X (XPS), et de résonance magnétique (essentiellement paramagnétique électronique, RPE), et lorsqu'il y a lieu l'impact (déplacement de pic) d'un changement isotopique subi par l'échantillon ; · de corréler la différence de position d'un pic entre deux échantillons proches et leurs propriétés respectives, telles que la longueur d'une liaison (spectroscopie de rotation), la force d'une liaison (IR, Raman), la nature de la liaison (UV-Vis), l'étage d'oxydation des éléments (XPS), etc. Les acquis d'apprentissage de l'activité contribuent au référentiel de compétences du programme pour les points suivants : B1.3, B1.5, B3.5 et B3.6. |
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Introduction à la mécanique quantique (14,5h + 14,5h): Bases expérimentales et théoriques. Résolution de l’équation de Schrödinger pour des cas simples, à une particule (puit de potentiel, oscillateur harmonique, rotateur rigide, atomes hydrogénoïdes). Traitement approximatif: atomes polyélectroniques, ion moléculaire H2+, molécules diatomiques. Dynamique moléculaire et notion de liaison chimique.
Fondements de spectroscopie (8h + 8h) : distinctions entre spectrocopie et spectrométrie, spectroscopies
d'absorption et d'émission, fondements des spectroscopies de rotation, vibration, libration, Raman de rotation et de vibration, UVVis,
XPS, techniques de résonance (essentiellement RPE).
Fondements de spectroscopie (8h + 8h) : distinctions entre spectrocopie et spectrométrie, spectroscopies
d'absorption et d'émission, fondements des spectroscopies de rotation, vibration, libration, Raman de rotation et de vibration, UVVis,
XPS, techniques de résonance (essentiellement RPE).
Méthodes d'enseignement
Cours magistraux et séances d'exercices dirigées.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Lors de l'examen écrit, plusieurs questions de connaissance et problèmes sont présentés aux étudiants. Les étudiants démontrent
leurs connaissances en énonçant et expliquant le contenu correspondant du socle de savoirs, et leur capacité à résoudre ces
problèmes en les résolvant et en expliquant leur démarche. Pour la spectroscopie, plus spécifiquement, des exercices chiffrés
visant l'exploitation des caractéristiques d'un spectre pour déduire les caractéristiques de l'échantillon l'ayant généré (et vice versa :
prédiction de l'allure d'un spectre à partir des caractéristiques d'un échantillon) sont en outre présentés. La reconnaissance d'une technique spectroscopique utilisée pour générer le spectre d'un échantillon est aussi un pilier de l'évaluation. Typiquement la cote globale est constituée sur 30 points dont 20 portant sur la mécanique quantique et 10 sur la spectroscopie, avant d'être ramenée sur 20 points.
leurs connaissances en énonçant et expliquant le contenu correspondant du socle de savoirs, et leur capacité à résoudre ces
problèmes en les résolvant et en expliquant leur démarche. Pour la spectroscopie, plus spécifiquement, des exercices chiffrés
visant l'exploitation des caractéristiques d'un spectre pour déduire les caractéristiques de l'échantillon l'ayant généré (et vice versa :
prédiction de l'allure d'un spectre à partir des caractéristiques d'un échantillon) sont en outre présentés. La reconnaissance d'une technique spectroscopique utilisée pour générer le spectre d'un échantillon est aussi un pilier de l'évaluation. Typiquement la cote globale est constituée sur 30 points dont 20 portant sur la mécanique quantique et 10 sur la spectroscopie, avant d'être ramenée sur 20 points.
Ressources
en ligne
en ligne
Les notes de cours (syllabus) sont disponibles sur le moodle du cours.
Bibliographie
- Notes de cours (syllabus) disponibles sur le moodle.
Support de cours
- Notes de cours (syllabus) disponibles sur le moodle.
Faculté ou entité
en charge
en charge
AGRO