Historical robotics applications were mostly developed for the industry, in the late 70s. The goal of industrial robotics is automatization of fabrication processes, targeting the increase of productivity.
Later on, robotics further penetrated other application fields, characterized by unpredictable environments (while an industrial operation zone is usually unchanging and predictable). Therefore, these robots have to adapt their behavior in response to changes in the interactions with the environment. Such applications are:
- Mobile robots (wheeled and legged robots), evolving on unknown and potentially irregular terrains.
- Surgical robots, assisting the surgeon to reach difficult body regions, to perform very accurate gestures (out of standard human capacities), etc'
- Rehabilitation robots, assisting patients with motor deficits to recover part of their autonomy.
- Companion robots, providing various services like load transport, guide in a museum, etc' to one or several persons.
At the end of this learning unit, the student is able to : | |
1 | In consideration of the reference table AA of the program "Masters degree in Mechanical Engineering", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning:
LMECA2732 implements an integration of different concepts covered in other courses (basic geometry, industrial automation, linear control, instrumentation and sensors, etc') in the field of industrial and mobile robotics. This course opens the perspectives to the broad field of robotics, giving access to more advanced courses and/or Master thesis. a. Disciplinary Learning Outcomes At the end of this course, students will be able to:
b. Transversal Learning Outcomes At the end of this course, students will be able to:
|
The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
- Introduction
- Mobile robot kinematics
- Mobile robot planning and control
- Mobile robot localization
- Recap of LMECA2755: kinematic modeling Trajectory planning, revisited
- Robot sensors
- Dynamics
- Robot control
- Force and impedance control
- Ethics in robotics
- Humanoid robotics
- Parallel robots (optional)
- Q&A and conceptual map
On top of that, a project about mobile robotics is organized. This project is completed by groups of 4-6 students.
- The final evaluation is a written exam. It lasts for about 3 to 4 hours, containing both theoretical questions, and exercises, similar to those covered during the lectures. No reference is allowed during this exam. If the student obtains 6/20 or less as final exam mark, only this will count for the final evaluation.
- Otherwise, if the student obtains more than 6/20 as final exam mark, the final evaluation is computed as following:
- The final written exam counts for 50% of the final mark.
- A problem-based learning project in mobile robotics has to be completed by groups of 4-5 students, to apply the theoretical concepts to a concrete example. The mark obtained in this project will count for 40% of the final mark.
- Finally, at the end of some lectures, a small online questionnaire will be organized, on a topic covered during the lecture. The mark obtained in these questioannaires will count for 10% of the final mark.
- Managing/answering the small on-line questionnaires provided at the end of some lectures.
- Broadcasting general information related to the course.
- Providing all lecture slides and necessary references.
- Managing a forum discussing/answering the questions asked by the students.
- Lecture slides
- "Introduction to Autonomous Mobile Robots" (http://www.mobilerobots.ethz.ch/) by Roland Siegwart et al.;
- "Robot Modeling and Control" (http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000518.html) by Mark W. Spong et al.
Chapters from other books are provided as complementary material for some specific lectures. The main reference for complementary materials is:
- "Springer Handbook of Robotics", 2nd edition (the 'bible' of robotics, http://www.springer.com/us/book/9783319325507) by Bruno Siciliano and Oussama Khatib (Eds.).
- Lecture slides