40.0 h + 7.5 h

UCLouvain

Imeca2648

Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol)

2018

5 credits

Q1

Teacher(s)	Bartosiewicz Yann ;				
Language :	English				
Place of the course	Louvain-la-Neuve				
Main themes	Reactor heat generation Transport equations (single-phase & two-phase flow) Thermal analysis of fuel elements (Single-phase fluid mechanics and heat transfer)'usually already known Two-phase flow dynamics Two-phase heat transfer Single heated channel; steady state analysis Single heated channel; transient analysis Flow loops Utilisation of established codes and introduction to advanced topics (modelling and thermalhydraulics for GEN4 reactors)				
Aims	 *To be familiarised with various reactor types and their main design and operational characteristics *To learn how to estimate the volumetric heat generation rate in fission reactor cores under normal operation and shutdown conditions *To learn how to analyse the thermal performance of nuclear fuel elements *To learn the basic fluid mechanics of single phase reactor cooling systems *To learn to calculate pressure drop in reactor systems, including tube bundles, and spacer grids *To learn to analyse the heat transfer characteristics of single phase reactor cooling systems *To learn the basic fluid mechanics of two-phase systems, including flow regime maps, void-quality relations, pressure drop, and critical flow *To learn the fundamentals of boiling heat transfer, and its implications for reactor design *To learn the fundamentals of core thermal design, with attention to design uncertainty analysis and hot channel factors. The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".				
Evaluation methods	Project (45%): set up a simulation tools to calculate the pressure drop in a boiling channel under different conditions Exam (55%): closed book. 4h. Understanding/theory/exercice				
Teaching methods	*30h of ex catedra lectures *14h of supervised personnal work *24h of supervised exercice sessions The course takes place at the Nuclear Research Centre of Belgium (SCK.CEN) in gthe framework of the BNEN interuniversity programme (see: http://bnen.sckcen.be). Courses taking place at SCK.CEN are condensed over a period of 2 intensive weeks of courses.				
Content	 Lect. 1: Thermal design principles Lect. 2: Reactor energy distribution Lect. 3: Transport eqns. For 1-phase flow: Reminders/summary Lect. 4: Tranport eqns. For 2-phase flows:basic formulation Lect. 5: Tranport eqns. For 2-phase flows:equations Lect. 6: Thermodynamics, cycles: non-flow and steady flow Lect. 7: Thermodynamics, cycles: non steady flow first law Lect. 8: Thermal analysis of fuel elements Lect. 9: 1-phase fluid mechanics/heat transfer: Reminders/summary Lect. 10: 2-phase fluid mechanics/pressure drops Lect. 11: 2-phase fluid mechanics/pressure drops Lect. 12: 2-phase heat transfer (pool boiling) Lect. 13: 2-phase heat transfer (flow boiling) Lect. 14: Single-heated channel: steady state analysis Lect. 15: Flow loops 				
Inline resources	http://bnen.sckcen.be				

Université catholique de Louvain - Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol) - en-cours-2018-lmeca2648

Bibliography	 Todreas, N.E. and Kazimi, M.S. Nuclear System I: Thermal Hydraulic Fundamentals, CRC Press, 2012. Todreas, N. E. and Kazimi, M.S. Nuclear Systems II: Elements of Thermal Hydraulic Design, Hemisphere Publishing Corp., New York, 1990. 					
	REFERENCE BOOKS ON THE CONTENT					
	 Todreas, N.E. and Kazimi, M.S. Nuclear System I: Thermal Hydraulic Fundamentals, CRC Press, 2012. Mandatory. Todreas, N. E. and Kazimi, M.S. Nuclear Systems II: Elements of Thermal Hydraulic Design, Hemisphere Publishing Corp., New York, 1990. Advised. 					
Faculty or entity in charge	MECA					

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Aims		
Master [120] in Electro- mechanical Engineering	ELME2M	5		•		
Master [120] in Mechanical Engineering	MECA2M	5		•		