Information visualisation

ldata2010  2018-2019  Louvain-la-Neuve

Information visualisation
5 credits
30.0 h + 30.0 h
Q1
Teacher(s)
Lee John;
Language
English
Content
·         What and why information visualisation?
·         Data abstraction: types of data and of datasets
·         Which visualisation for which task?
·         Validating visualisations
·         Display and ocular perception
·         Visualisation channels (colour, size, shape, angle, ...)
·         Tabular data: lists, matrices, tensors
·         Spatial data: scalar, vector and tensor fields
·         Networks and trees
·         Link between machine learning and visualisation
·         Reducing items and attributes: feature selection and dimensionality reduction
·         Interactive visualisation
·         Multiple views
·         Advanced topics in visualisation
Teaching methods
Lectures, practical sessions on computers, project
Evaluation methods
Oral Exam
Online resources
Moodle page of the course
Bibliography
  • Slides of the course, available on Moodle
Visualization analysis & Design, Tamara Munzner, CRC Press, 2015.
Teaching materials
  • Slides of the course, available on Moodle
Faculty or entity
EPL


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [120] in Data Science Engineering

Master [120] in data Science: Information technology