At the end of this learning unit, the student is able to : | |
1 | At the end of the course, students will be able : · to solve basic problems using models allowing to predict mechanical responses of materials involving (hyper)elasticity and (visco)plasticity under finite strains as well as crack propagations, · to explain the physics underlying each model and the link between microstructure and macroscopic mechanical properties, · to explain the origin of various phenomena including anisotropy of composite materials, elastic spring back and necking of plastically deformed samples, residual stresses and creep. · to select a material with the best combination of mechanical properties based on the definition of performance indices, According to the classification of LO in the EPL programme, this activity contributes to the development and acquisition of the following LO: LO1.1, LO1.2, LO1.3, LO2.1, LO2.2, LO2.4, LO5.3, 5.4, 5.6
|
The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
· Materials selection procedure to achieve desired mechanical properties (material classes, performance indices)
· Complements of linear thermo(visco)elasticity : phase partitioning of strain and stress in composite materials (incl. eigenstrains and anisotropy)
· Contact stresses
· Plasticity and viscoplasticity (yield surface, J2 theory, elastic springback, dynamic loading, creep)
· Finite strains (hyperelasticity, plastic spin)
· Linear elastic fracture mechanics + influence of microstructure on toughness
- Fatigue
The final exam will asssess both the level of understanding of theoretical concepts and the student's skills to solve practical exercices. Students will be graded while accounting also for the outcome of their project.
- Lecture notes written by the teachers
- Lecture notes written by the teachers
- Lecture notes written by the teachers