Enseignants
El Ghouch Anouar;
Langue
d'enseignement
Français
Thèmes abordés
- Distribution multinomiale (marginales, conditionnelles et propriétés asymptotiques). - Tables de contingence à deux critères : indépendance et homogénéité, mesures d'association et tests particuliers (Fisher, Mac Nemar,...). - Tables de contingence à plusieurs critères : indépendance mutuelle, partielle et conditionnelle. - Modèles log-linéaires. - Modèles conditionnels * Principes généraux * Modèle linéaire généralisé * Modèles probit et logit. - Analyse discriminante multinomiale, sélection de variables explicatives.
Acquis
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : |
1 |
A. Eu égard au référentiel AA du programme de master en statistique, orientation générale, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.3, 1.5, 2.2, 5.5, 5.6
Eu égard au référentiel AA du programme de master en statistique, orientation biostatistique, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.3, 1.5, 2.2, 3.4, 5.5, 5.6, 5.7
B. Au terme du cours, l'étudiant sera initié aux techniques de base de l'analyse des données discrètes ou catégories et sera capable de les appliquer sur des données réelles au moyen de logiciels de statistique.
|
|
La contribution de cette UE au développement et à la maîtrise des
compétences et acquis du (des) programme(s) est accessible à la fin de
cette fiche, dans la partie « Programmes/formations proposant
cette unité d’enseignement (UE) ».
Contenu
Contenu
- Distribution multinomiale (marginales, conditionnelles et propriétés asymptotiques).
- Tables de contingence à deux critères : indépendance et homogénéité, mesures d'association et tests particuliers (Fisher, Mac Nemar,...).
- Tables de contingence à plusieurs critères : indépendance mutuelle, partielle et conditionnelle.
- Modèles log-linéaires.
- Modèles conditionnels
* Principes généraux
* Modèle linéaire généralisé
* Modèles probit et logit.
- Analyse discriminante multinomiale, sélection de variables explicatives.
Méthode
Les exposés magistraux dont concentrés sur les 10 premières semaines du quadrimestre. Les quatre semaines suivantes sont consacrées à la réalisation, sans guidance, d'un travail d'application.
Autres infos
Pré-requis
Cours de base (niveau des candidatures) de Calcul des Probabilités et de Statistique.
Evaluation
Chaque étudiant reçoit un ensemble de données qu'il doit analyser au moyen de toutes les techniques vues au cours. Cette analyse fait l'objet d'un rapport que l'étudiant doit soumettre oralement devant les Professeurs. Durant la présentation de ce rapport, les Professeurs se réservent le droit d'interroger l'étudiant sur la matière vue au cours.
Support
La troisième référence sert de syllabus pour le cours. Certains compléments seront fournis aux étudiants.
Encadrement
Professeurs : P. Bogaert, M. Mouchart et J.M. Rolin
Ouvrages de référence
Bishop Y.M.M., Fienberg S.E. and P.W. Holland (1975) : Discrete Multivariate Analysis, Theory and Practice, M.I.T. Press, Cambridge, Mass.
Dobson Annette (1990) : An Introduction to Generalized Linear Models, Chapman and Hall, London.
Gérard G. and J.M. Rolin (1979) : Analyse des données discrètes, Recyclage en statistique, vol. 3, Université catholique de Louvain, Louvain-la-Neuve.
Faculté ou entité
en charge
LSBA
Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en statistique, orientation biostatistiques
Master [120] en sciences économiques, orientation générale
Master [120] en statistique, orientation générale
Master [120] : ingénieur civil en mathématiques appliquées
Master [120] en science des données, orientation statistique