Data Analytics applied in Business (Names from A to K)

llsmf2013  2018-2019  Louvain-la-Neuve

Data Analytics applied in Business (Names from A to K)
5 crédits
30.0 h
Q2
Enseignants
Kolp Manuel; Saerens Marco;
Langue
d'enseignement
Anglais
Thèmes abordés
Nowadays, data are everywhere. For most organizations, potentially every area of its business, as well as every relationship related to its business, can now be quantified and recorded. Such amount of data led to the emergence of powerful methods for storing, processing, querying, and extracting useful information/knowledge from these data. This course will be focused on methods for data understanding, design, management, preparation, modeling, querying, and visualization, as a global means for the organization of making better decisions. As a central element in data analytics, modeling and methodology will play an important role in this course, including, e.g., data design for business intelligence analytics, predictive modeling, or fitting statistical models to data.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1

Having regard to the LO of the programme, this activity contributes to the development and acquisition of the following LO:

  • Appliquer une démarche scientifique (3.1 à 3.5)
  • Gérer un projet (7.1 à 7.3)

At the end of this course, students should be able to :

 

  • Understand and evaluate the scope, the risks, and the opportunities of data analytics within a company;
  • Understand and apply the standard methods and methodologies, coming both from computer sciences and statistics, for managing, exploiting, and analyzing these data;
  • Extract useful information & knowledge supporting decision-making from these data;
  • Analyze and interpret the obtained analytical results.
 

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
The scope of the course is broad and the instructor will certainly not be able to cover all of the material concerning data analytics in business. Depending of his background, interests and experience, he will focus on some specific techniques or skim through a broad range of methods.
Potential covered topics are (but not limited to): database design for data analytics, business intelligence techniques, dimensionality reduction for data visualization, extracting recurrent patterns from data, cluster analysis, predictive modeling (supervised classification and regression methods), modeling relationships by latent variable techniques, data analysis algorithms scaling to big data, etc. All these techniques must be illustrated through business applications.
Méthodes d'enseignement
Classical courses and case studies
Modes d'évaluation
des acquis des étudiants
Continuous evaluation
  • Date: Will be specified later
  • Type of evaluation: Project with rapport
  • Comments: 40% of the final result
Evaluation week
  • Oral: No
  • Written: No
  • Unavailability or comments: No
Examination session
  • Oral: No
  • Written: Yes
  • Unavailability or comments: 60% of the final result
Bibliographie
Potential sources:
  • Provost &  Fawcett (2013) 'Data science for business'. O'Reilly.
  • Sherman (2014) 'Business intelligence guidebook: from data integration to analytics'. Morgan Kaufmann.
  • Efraim, Sharda & Delen (2010) 'Decision support and business intelligence Systems'. Pearson.
  • Leskovec, Rajaraman  & Ullman (2014) 'Mining of massive datasets, 2nd ed'. Cambridge University Press.
  • Kelleher, Mac Namee & D'Arcy (2015) 'Fundamentals of machine learning for predictive data analytics. MIT Press.
  • Hastie, Tibshirani & Friedman (2009), "The elements of statistical learning, 2nd ed". Springer-Verlag.
  • Izenman (2008), 'Modern multivariate statistical techniques: regression, classification, and manifold learning. Springer.
  • Bellanger & Tomassone (2014), "Exploration de données et méthodes statistiques : data analysis & data mining avec le Logiciel R". Ellipses.
Faculté ou entité
en charge
CLSM


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en ingénieur de gestion

Master [120] en ingénieur de gestion

Approfondissement en sciences informatiques