

lepl1105	Analyse II
2018	Analyse ii

5 crédits	30.0 h + 30.0 h	Q2

Enseignants	Glineur François ;Keunings Roland ;SOMEBODY ;				
Langue d'enseignement	Français				
Lieu du cours	Louvain-la-Neuve				
Préalables	Ce cours supposes acquises les notions de mathématiques telles qu'enseignées dans les cours LEPL1101 et LEPL1102.				
Thèmes abordés	Fonctions de plusieurs variables réelles. Continuité et différentiabilité. Problèmes d'approximation et d'optimisation. Analyse vectorielle et théorèmes intégraux. Equations différentielles linéaires à coefficients constants. Modélisation et résolution de problèmes simples.				
Acquis	Au terme du cours, l'étudiant sera capable de				
d'apprentissage	 Exprimer des notions métriques dans Rn en utilisant le langage de la topologie. Calculer des limites et étudier continuité et différentiabilité pour les fonctions de plusieurs variables (scalaires et vectorielles). Approcher une fonction à l'aide du polynôme de Taylor 				
	 Localiser et identifier les extrema libres d'une fonction ; localiser les extrema sous contrainte d'une fonction à l'aide de la technique des multiplicateurs de Lagrange. 				
	 Calculer des intégrales multiples en utilisant éventuellement un changement de variable. Calculer des intégrales de ligne, de surface, la circulation d'un champ de vecteurs le long d'une courbe et le flux d'un champ de vecteurs à travers une surface en utilisant éventuellement les théorèmes de type Stokes 				
	 Résoudre une équation différentielle linéaire à coefficients constants d'ordre quelconque Lire de manière critique un énoncé, rédiger de manière rigoureuse de courtes démonstrations, rechercher par des exemples et des contre-exemples 				
	- Utiliser les contenus mathématiques ci-dessus pour modéliser et résoudre des problèmes simples Le cours participe à développer les AA du programme : à compléter (AA 1.1, 1.2, peut-être 2.3, 2.6, 2.7, 3.2, 4.1)				
	La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d'enseignement (UE) ».				
Modes d'évaluation des acquis des étudiants	Les étudiants sont évalués individuellement lors d'un examen écrit sur base des objectifs énoncés plus haut. outre, les résultats d'une évaluation continue pourront éventuellement être intégrés dans la note finale.				
Méthodes d'enseignement	Cours magistral en grand auditoire, séances d'apprentissage par exercices (APE) et par problèmes (APP) en propues, éventuellement complétés par la résolution d'exercices en ligne.				
Contenu	 Fonction réelle à plusieurs variables scalaires et vectorielles, topologie, limites et continuité Différentiabilité, dérivées partielles et directionnelles, plan tangent, gradient et matrice Jacobienne Dérivées partielles d'ordre supérieur et polynôme de Taylor Extrema libres et extrema sous contrainte, multiplicateurs de Lagrange Intégrales multiples et changements de variables Intégrales de ligne et de surface, circulation et flux d'un champ de vecteurs Notion de bord et théorèmes de type Stokes 				
Ressources en ligne	https://moodleucl.uclouvain.be/course/view.php?id=12176				
Bibliographie	Multivariable Calculus with Applications par Peter D. Lax et Maria Shea Terrell, Springer, 2017.				
	Multivariable Calculus with Applications par Peter D. Lax et Maria Shea Terrell, Springer, 2017.				

Université catholique de Louvain - Analyse II - cours-2018-lepl1105

Faculté ou entité en	BTCI
charge:	

Programmes / formations proposant cette unité d'enseignement (UE)						
Intitulé du programme	Sigle	Crédits	Prérequis	Acquis d'apprentissage		
Bachelier en sciences de l'ingénieur, orientation ingénieur civil	FSA1BA	5		٩		
Bachelier en sciences de l'ingénieur, orientation ingénieur civil architecte	ARCH1BA	5		٩		