d'enseignement
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 | a. Contribution de l¿activité au référentiel AA du programme 1.1, 1.3, 1.4, 2.1, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 b. Formulation spécifique pour cette activité des AA du programme
¿ déterminer les solutions des équations aux dérivées partielles classiques de la physique dans des géométries simples ; ¿ développer des fonctions données en série de Fourier ; ¿ utiliser la théorie des séries de Fourier dans l'espace de Hilbert ; ¿ construire des polynômes orthogonaux classiques et les utiliser pour résoudre des équations différentielles ; ¿ appliquer la transformation de Fourier au problème de solution d'équations aux dérivées partielles. |
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
2. Équations aux dérivées partielles classiques de la physique : classification des équations aux dérivées partielles linéaires de second ordre, équations de la chaleur, équation d'onde et équation de Laplace, existence et unicité des solutions, méthodes de résolution.
3. Espaces de Hilbert : espaces préhilbertiens, complétude et espace de Hilbert, bases hilbertiennes, espaces de suites et fonctions carré-sommables, théorie abstraite des séries de Fourier.
4. Polynômes orthogonaux :définition sur des intervalles finis et infinis, relations de récurrence, formule de Rodriguez et polynômes orthogonaux classiques (Jacobi, Chebyshev, Legendre, Laguerre, Hermite), équations différentielles de second ordre associées, applications des polynômes de Legendre et harmoniques sphériques en physique.
5.Transformations de Fourier :définition et propriétés, produit de convolution, formule de sommation de Poisson, application à la resolution d'équation différentielles linéaires ; distributions et leur transformées de Fourier.
Les cours magistraux visent à introduire les concepts etidées des méthodes mathématiques nécessaires pour la compréhension de théories modernes de la physique (telles que la physique quantique),en établissant des résultatsrigoureux et en présentant des techniques et stratégies de calcul, età montrer leurs liens réciproques et leurs relations avec d'autres unités d'enseignement du programme du Bachelier en sciences physiques.
L'objectif desséances de travaux pratiques est l'entraînement des méthodes de calcul par analyse de nombreux exemples et applications des notions vues au cours théoriques.
Les deux activités se donnent en présentiel.
des acquis des étudiants
en ligne
' C. Aslangul 'Des mathématiques pour les sciences, De Boeck (2011).
en charge