5 crédits
30.0 h + 12.0 h
Q1
Enseignants
Dejemeppe Muriel;
Langue
d'enseignement
d'enseignement
Français
Préalables
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
(i) Le cours aborde plusieurs méthodes corrigeant pour le biais d'endogénéité à partir de données transversales et de panel : la méthode de variables de " procuration " (" proxy variables") ; la méthode en " pre-mière différence ", en " double différence " et à " effet fixe " ; la méthode de variables instrumentales et (fa-cultativement) l'estimation des équations simultanées.
(ii) On rappelle l'estimation des modèles à choix binaire ; On développe les modèles sur données tronquées et censurées ; facultativement, on traite un ou plusieurs thèmes parmi la liste suivante : modèles de choix multiples (ordonnés ou non), le modèle de Poisson et/ou le modèle de sélection endogène (" Heckit ").
Les méthodes sont illustrées par des exemples dans divers domaines d'application en économie. Au minimum un tiers du cours est consacré à l'apprentissage d'un logiciel sur base duquel l'étudiant peut appliquer à des données les méthodes d'estimation apprises au cours. Cette apprentissage se réalise sur base d'exemples de pro-grammation de l'enseignant et sur base d'exercices pratiques réalisés par les étudiants.
L'évaluation du cours porte non seulement sur la compréhension de la théorie, mais aussi sur la capacité à met-tre en uvre des méthodes d'estimation avec un logiciel sur des données inconnues.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 | Ce cours introduit l'étudiant à l'analyse des données en coupe transversale et en panel. Il vise deux objectifs principaux : apprendre (i) comment identifier et estimer l'effet causal d'une variable (par exemple : une politi-que, l'action d'une entreprise ou d'un consommateur, le changement d'un prix, ) sur la variable dépendante (par exemple : le niveau du salaire ou du profit, la quantité de biens vendus, ) ; il s'agit de tenir compte du biais " d'endogénéité " induit par des variables inobservées, par des erreurs de mesure et/ou par des relations de simultanéité ; (ii) comment la méthode d'estimation peut tenir compte des variables dépendantes qui ne sont que partiellement observées (" tronquées " et/ou " censurées ") ou qui ne sont pas continues, mais discrètes (ordon-nées ou non). L'étudiant devra comprendre en quoi les méthodes apprises peuvent l'aider à trouver une réponse aux questions concrètes posées dans divers domaines d'application en économie tel que l'économie du travail, l'économie industrielle, l'économie du développement ou l'économie publique. Au terme du cours, il devrait également être capable d'appliquer les méthodes d'estimation, de bien interpréter les paramètres estimés et de pouvoir tester certaines hypothèses, notamment sur la validité de la méthode suivie et sur la spécification du modèle estimé. |
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
1. Rappels de la méthode des MCO sur données transversales
2. Biais des variables omises (ou non observées)
3. Méthode des variables instrumentales
4. Méthodes d’estimation sur données transversales agrégées
4.1. Estimateur des MCO agrégés
4.2. Estimateur de «différence de différences»
5. Méthodes d’estimation sur données de panel
5.1. Estimateur en «différence première»
5.2. Estimateur à «effet fixe»
5.3. Estimateur à «effet aléatoire»
6. Modèles pour variables dépendantes qualitatives
6.1. Modèles de probabilité linéaire, probit et logit
6.2. Modèle Tobit*
6.3. Modèle normal tronqué*
6.4. Méthodes de correction d’échantillonnage endogène*
+ Intitiation au logiciel d'analyse statistique STATA
* Si le temps le permet.
2. Biais des variables omises (ou non observées)
3. Méthode des variables instrumentales
4. Méthodes d’estimation sur données transversales agrégées
4.1. Estimateur des MCO agrégés
4.2. Estimateur de «différence de différences»
5. Méthodes d’estimation sur données de panel
5.1. Estimateur en «différence première»
5.2. Estimateur à «effet fixe»
5.3. Estimateur à «effet aléatoire»
6. Modèles pour variables dépendantes qualitatives
6.1. Modèles de probabilité linéaire, probit et logit
6.2. Modèle Tobit*
6.3. Modèle normal tronqué*
6.4. Méthodes de correction d’échantillonnage endogène*
+ Intitiation au logiciel d'analyse statistique STATA
* Si le temps le permet.
Méthodes d'enseignement
L'enseignant explique la théorie sur base de transparents. Les méthodes d'estimation sont chaque fois illustrées par des exemples d'application dans divers domaines de l'économie. L'étudiant complète sa compréhension du cours sur base d'un livre de référence.
Les étudiants apprennent à mettre en oeuvre les méthodes d'estimation sur des données réelles avec le logiciel STATA et le support d'un assistant. Cette apprentissage se réalise sur base de quelques cours pratiques dans la salle informatique. Au début du quadrimestre, les étudiants qui n'ont jamais utilisé STATA sont invités à participer à une séance d’initiation à ce logiciel.
Les étudiants apprennent à mettre en oeuvre les méthodes d'estimation sur des données réelles avec le logiciel STATA et le support d'un assistant. Cette apprentissage se réalise sur base de quelques cours pratiques dans la salle informatique. Au début du quadrimestre, les étudiants qui n'ont jamais utilisé STATA sont invités à participer à une séance d’initiation à ce logiciel.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
L’examen consiste en une évaluation individuelle en session (janvier et/ou août) qui porte sur 20 points. Elle comporte deux parties «à livres fermés» : (1) une partie "théorique" en auditoire (14 points sur 20), et (2) une partie "pratique" (6 points sur 20) en salle informatique (programmation d’un exercice sur données réelles avec STATA). Dans la partie (1) de l'examen, un test à mi-parcours peut représenter jusque 4 points sur 14.
Un test à mi-parcours sur 4 points est organisé début novembre. Les étudiants qui ne présentent pas le test ou qui jugent leur cote au test insuffisante, ont la possibilité de répondre à une question de substitution sur 4 points dans la partie "théorique" de l'examen (en janvier et/ou août). Les étudiants qui choisissent de conserver leur cote sur 4 points ne répondent pas à cette question.
Un test à mi-parcours sur 4 points est organisé début novembre. Les étudiants qui ne présentent pas le test ou qui jugent leur cote au test insuffisante, ont la possibilité de répondre à une question de substitution sur 4 points dans la partie "théorique" de l'examen (en janvier et/ou août). Les étudiants qui choisissent de conserver leur cote sur 4 points ne répondent pas à cette question.
Autres infos
Prérequis :
LECGE 1316 - Econométrie, ou cours équivalent.
LECGE 1316 - Econométrie, ou cours équivalent.
Ressources
en ligne
en ligne
Voir Moodle UCL (http://moodleucl.uclouvain.be/).
Bibliographie
- Les supports de cours sont disponibles sur moodle.
- Jeffrey Wooldridge (2016), Introductory Econometrics: A Modern Approach, 6th Edition, Cengage Learning.
Jeffrey Wooldridge (2016), Introductory Econometrics: A Modern Approach, 6th Edition, Cengage Learning.
Support de cours
- Les supports de cours sont disponibles sur moodle.
- Jeffrey Wooldridge (2016), Introductory Econometrics: A Modern Approach, 6th Edition, Cengage Learning.
Faculté ou entité
en charge
en charge
ECON
Programmes / formations proposant cette unité d'enseignement (UE)
Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
d'apprentissage
Master [120] en sciences économiques, orientation générale
Master [120] en statistique, orientation générale
Master [120] : ingénieur civil en mathématiques appliquées
Master [120] en sciences agronomiques et industries du vivant