5 credits
30.0 h + 30.0 h
Q1
Teacher(s)
Charlier Jean-Christophe; Gonze Xavier coordinator; Lherbier Aurélien (compensates Charlier Jean-Christophe); Piraux Luc; Rignanese Gian-Marco;
Language
French
Main themes
Quantum physics : non-relativistic quantum mechanics postulates ; measure theory ; hydrogen atom ; polyelectronic atoms ; harmonic oscillator ; spin ; variational principle (Ritz) ; formation of the chemical bonds.
Statistical physics : basic notions, the kinetic theory of gases, the different statistical ensembles (microcanonical, canonical and grand-canonical), and quantum fluids (fermions and bosons)
Statistical physics : basic notions, the kinetic theory of gases, the different statistical ensembles (microcanonical, canonical and grand-canonical), and quantum fluids (fermions and bosons)
Aims
At the end of this learning unit, the student is able to : | |
1 | Contribution of the course to the program objectives Axis Nº1 :1.1 Specific learning outcomes of the course At the end of their classes, the students are expected to be able:
|
The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Content
1 Quantum physics
1.1. Introduction/Reminders
1.2. Postulates
1.3. Operators
1.4. Measure theory (including Heisenberg uncertainty principle)
1.5. Hydrogen atom
1.6. Polyelectronic atoms
1.7. Matrix mechanics
1.8. Harmonic oscillator (creation and annihilation operators)
1.9. Spin
1.10. Variational principle
1.11. Tight-binding method (understanding of the electronic structure and cohesion of diatomic molecules)
2 Statistical Physics
2.1. Introduction: Elements of Statistical Physics
2.2. Kinetic Theory of Gases and , and billiard game theory
2.3. Microcanonical Ensemble
2.4. Canonical Ensemble
2.5. Grand-Canonical Ensemble
2.6. Quantum Fluids
1.1. Introduction/Reminders
1.2. Postulates
1.3. Operators
1.4. Measure theory (including Heisenberg uncertainty principle)
1.5. Hydrogen atom
1.6. Polyelectronic atoms
1.7. Matrix mechanics
1.8. Harmonic oscillator (creation and annihilation operators)
1.9. Spin
1.10. Variational principle
1.11. Tight-binding method (understanding of the electronic structure and cohesion of diatomic molecules)
2 Statistical Physics
2.1. Introduction: Elements of Statistical Physics
2.2. Kinetic Theory of Gases and , and billiard game theory
2.3. Microcanonical Ensemble
2.4. Canonical Ensemble
2.5. Grand-Canonical Ensemble
2.6. Quantum Fluids
Teaching methods
Ex cathedra lectures and exercices sessions.
Evaluation methods
The students are evaluated individually, in a written examination, on the basis of the above-mentioned learning outcomes (questions will focus on their knowledge, their understanding, their ability to apply the concepts explained during the lecture, the latter being developed during the exercise sessions). Concerning quantum fluids, a tasting session is organized.
Online resources
Bibliography
Sur icampus, sont disponibles : les transparents/syllabus de support.
Des livres de support sont disponibles à la BST
Des livres de support sont disponibles à la BST
Faculty or entity
FYKI
Programmes / formations proposant cette unité d'enseignement (UE)
Title of the programme
Sigle
Credits
Prerequisites
Aims
Minor in Engineering Sciences : Applied Chemistry and Physics