5 credits
45.0 h + 15.0 h
Q2
Teacher(s)
Demoustier Sophie; Elias Benjamin; Fustin Charles-André (compensates Elias Benjamin); Mignon Denis;
Language
French
Prerequisites
FSAB 1301 (Chemistry 1) or a similar course
FSAB 1302 (Chemistry 2) or a similar course
FSAB 1302 (Chemistry 2) or a similar course
Main themes
The course is divided in three parts. The first part deals with 'generalities' required for a good understanding of the reactivity in organic chemistry, namely the reasons why organic compounds do or do not react in given conditions.
The second part describes the chemical behavior of the main organic compounds, illustrating the relationships between the structure of a given functional group and its reactivity. The lessons will be frequently illustrated with examples from other disciplines such as materials science and life sciences.
The third part consists in an introduction to the main separation techniques used in the chemical industry and to the oil refining industry in particular. It addresses the thermodynamics of phase equilibria (liquid-liquid and liquid-vapor) and describes some practical applications of these equilibria, such as liquid-liquid extraction or fractional distillation.
The second part describes the chemical behavior of the main organic compounds, illustrating the relationships between the structure of a given functional group and its reactivity. The lessons will be frequently illustrated with examples from other disciplines such as materials science and life sciences.
The third part consists in an introduction to the main separation techniques used in the chemical industry and to the oil refining industry in particular. It addresses the thermodynamics of phase equilibria (liquid-liquid and liquid-vapor) and describes some practical applications of these equilibria, such as liquid-liquid extraction or fractional distillation.
Aims
At the end of this learning unit, the student is able to : | |
1 | Contribution of the course to the program objectives Regarding the learning outcomes of the program of Bachelor in Engineering Sciences, this course contributes to the development and the acquisition of the following learning outcomes: LO 1.1 : Apply concepts, laws, reasoning to disciplinary reduced problems. Specific learning outcomes of the course At the end of the course, the student will be able to:
|
The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Content
Part 1
1. Structure, chemical bonds and geometry of organic molecules
2. Isomerism
3. Reactivity in organic chemistry (energy diagrams, intermediates, types of reactants, electronic effects)
Part 2
4. Alkanes , alkenes and alkynes
5. Alkyl halides
6. Aromatic compounds
7. Alcohols, thiols, ethers and epoxydes
8. Aldehydes and ketones
9. Carboxylic acids and their derivatives
10. Amines and their derivatives
Part 3
11. Phase equilibria : real systems with one or several constituents
12. Practical applications of phase equilibria
13. Introduction to the refining industry
1. Structure, chemical bonds and geometry of organic molecules
2. Isomerism
3. Reactivity in organic chemistry (energy diagrams, intermediates, types of reactants, electronic effects)
Part 2
4. Alkanes , alkenes and alkynes
5. Alkyl halides
6. Aromatic compounds
7. Alcohols, thiols, ethers and epoxydes
8. Aldehydes and ketones
9. Carboxylic acids and their derivatives
10. Amines and their derivatives
Part 3
11. Phase equilibria : real systems with one or several constituents
12. Practical applications of phase equilibria
13. Introduction to the refining industry
Teaching methods
The course is based on lectures and exercises-based learning
Evaluation methods
Students are evaluated through a final written examination
Online resources
Bibliography
Les slides présentées au cours et les énoncés des exercices sont disponibles sur Moodle.
Ouvrages de référence recommandés:
Ouvrages de référence recommandés:
- L. Craine, D. Hart, C. Hadad, Chimie Organique 1 et 2, Dunod, 2008
- D. Klein, Organic Chemistry, Wiley, 2011
Faculty or entity
FYKI
Programmes / formations proposant cette unité d'enseignement (UE)
Title of the programme
Sigle
Credits
Prerequisites
Aims
Minor in Engineering Sciences : Applied Chemistry and Physics