

linma1510 2017

Linear Control

5 credits

30.0 h + 30.0 h

Teacher(s)	Dochain Denis ;				
Language :	French				
Place of the course	Louvain-la-Neuve				
Main themes	Derivation of mathematical models of linear dynamical systems (state equations and transfer functions). Design or regulators and closed-loop control systems in order to satisfy specifications of stability, robustness, steady-state accuracy and transient performance. PI and PID regulation. Computer aided design.				
Aims	With respect to the referentiel AA, this courses contributes to the development, the acquisition and the evaluation of the following learning outcomes :				
	• AA1.1, AA1.2, AA1.3 • AA5.3, AA5.4, AA5.5				
	At the end of the course, the student will be able :				
	 to design control systems on the basis of linear models; to design control systems in closed loop aimed at meeting stability, robustness, steady-sate accuracy and transient behaviour performance requirements; to use computer-aided control design methods; to implement closed-loop control systems in laboratory conditions, in conditions close to those encountered in industrial practice; to use discrete time controllers implemented on PLC's; to perform experiments in an autonimous way, from the planning of the work until the practical implementation and the performance evaluation. 				
	The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".				
Evaluation methods	Laboratory evaluation outside of the exam period and written exam.				
Teaching methods	Problem-based learning, laboratory experiments.				
Content	 Mathematical models General principles of closed-loop control Stability Steady-state accuracy Disturbance attenuation Transient performance Robustness Regulation structures Case studies: electrical machines, automotive systems, aeronautics, thermic and nuclear power plants, heat exchangers, industrial grinding and mixing processes, etc. 				
Inline resources	https://moodleucl.uclouvain.be/course/view.php?id=7834				
Bibliography	Transparents, notices de laboratoire. Livre de référence : K. Astrom & R. Murray, Feedback Systems: An Introduction for Scientists and Engineers http www.cds.caltech.edu/~murray/amwiki/index.php				
Faculty or entity in charge	MAP				

Programmes containing this learning unit (UE)					
Program title	Acronym	Credits	Prerequisite	Aims	
Master [120] in Electrical Engineering	ELEC2M	5		٩	
Master [120] in Chemical and Materials Engineering	KIMA2M	5		٩	
Master [120] in Mechanical Engineering	MECA2M	5		٩	
Minor in Engineering Sciences: Applied Mathematics	LMAP100I	5		٩	
Minor in Engineering Sciences: Mechanics	LMECA100I	5		٩	