lingi1101

2017

Discrete mathematics: logical foundations of computing science

5 credits

UCLouvain

30.0 h + 30.0 h

Q1

Teacher(s)	Van Roy Peter ;				
Language :	French				
Place of the course	Louvain-la-Neuve				
Prerequisites	Within SINF1BA : LSINF1250 Within FSA1BA : LFSAB1101, LFSAB1102, LFSAB1401, (LFSAB1301, LFSAB1201, LFSAB1202) The prerequisite(s) for this Teaching Unit (Unité d'enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.				
Main themes	 Part I: Propositional logic and predicate logic Propositional logic (syntax, semantics, proofs) Predicate logic (quantifiers, bound and free variables, proofs) and application to algorithm analysis Set theory and application to formal system specification (Z notation) Relations and applications in computer science (relational databases, overriding, binary relations, ') Functions and lambda calculus Part II: Discrete structures Graphs (basic concepts, paths and connectivity) Applications of graphs, e.g., to model social networks (ties, homophily, closure) Graphs and properties of graphs used to model Internet-based networks 				
Aims	Given the learning outcomes of the "Bachelor in Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: • AA1.1, AA1.2 • AA2.4 Given the learning outcomes of the "Bachelor in Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: • S1.I1, S1.G1 • S2.2				
	 Students completing this course successfully will be able to convert ordinary language statements into logical expressions using the syntax and semantics of propositional or predicate logic use rules of inference to construct proofs in propositional or predicate logic describe how symbolic logic can model real-life situations , such as those encountered in the context of computing (eg analysis algorithms) identify and define precisely the basic concepts of graphs and trees providing contextualized examples that highlight these concepts explain various methods of graph paths model various real-world problems encountered in computer using the appropriate forms of graphs and trees, such as social networks and the Web explain the key concepts of the theory of games (game type, the type of policy agents) using appropriate examples 				
Evaluation methods	Students will have developed skills and operational methodology. In particular, they have developed their ability to				
Evaluation methods	• written exam				

Teaching methods	2h of lecture / week 2h of exercise sessions / week				
Content	Preliminaries: sets, relations, and functions; formal systems. Mathematical logic:				
	 proposition calculus syntax, semantics, proof theory; first-order predicate calculus syntax, semantics, proof theory, resolution and refutation; first-order theoriesmodels, consistency, inclusion, extension, etc. Equational theories: equality, partial orders, lattices, groups. Discrete structures on the Internet: graphs and graph properties, giant components, strong and weak links, triadic closure, structural balance, balance theorem, structure of the Web, PageRank, power laws, the long tail. Applications to various domains : program verification, specification of abstract data types, automated reasoning, expert systems, robotics, databases, parsing, etc. 				
Inline resources	http://icampus.uclouvain.be/claroline/course/index.php?cid=ingi1101				
Bibliography	Transparents en ligne sur icampus Livres :				
	 Introductory Logic and Sets for Computer Scientists par Nimal Nissanke Networks, Crowds and Markets: Reasoning About a Highly Connected World par David Easley and Jon Kleinberg, 				
Other infos	Background :				
	 Elementary discrete mathematics (functions , sets,) Use of different techniques of mathematical proof 				
Faculty or entity in charge	INFO				

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Aims			
Bachelor in Computer Science	SINF1BA	5	LSINF1250 AND LSINF1101 AND LSINF1102 AND LSINF1103	٩			
Minor in Computer Sciences	LINFO100I	5	LSINF1103	٩			
Additionnal module in Mathematics	LMATH100P	5		٩			
Additionnal module in Mathematics	TMATH100P	5		٩			