UCLouvain

lelec2620

2017

Modeling and implementation of analog and mixed analog/digital circuits and systems on chip

5 credits	30.0 h + 30.0 h	Q2

Teacher(s)	Bol David ;					
Language :	English					
Place of the course	Louvain-la-Neuve					
Main themes	Over the last decades, integrated circuits have evolved from chips with a single function to complex systems on a single silicon chip. Such modern systems-on-chip (SoCs) features digital signal processors, microcontrollers, analog and RF circuits to provide the necessary interfaces to the physical world made of sensor signals, audio/video interfaces, electronic signals or wireless communications. These analog/mixed-signal (AMS) systems require the co-integration, co-design and co-verification of analog and digital circuits on the same CMOS technology platform. In this course, we will study the implementation of mixed analog/digital circuits with the help of behavioral modeling, as an essential tool within the design flow of AMS systems. This course concludes the ELEC formation in electronic circuits and systems.					
Aims	a. Contribution of the activity to the learning outcomes of the program AA1 Knowledge base: electronic concepts (AA1.1), simulation and CAD tools (AA1.2) AA2 Engineering skills: analysis and modeling of an electronic system, AA3 R&D skills: find appropriate references on the existing solutions in the field of the course's project (AA3.1) AA4 Project management AA5 Communication skills: analysis and writing of a technical datasheet (AA5.3-5.5). b. Learning outcomes After this course, the electrical engineers in circuit and systems should be able to: 1					
Evaluation methods	can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit". The evaluation is based on several assignments in groups during the semester and an individual exam during					
Teaching methods	the session. The course is organized as follows. • lectures on the key AMS concepts, • seminars given by experts from the industry illustrating recent AMS systems. • assignment in groups for active learning with in-class kick-off and debriefing sessions					
Content	AMS system design methodologies Behavorial analog modeling Analog non idealities and auto-compensation Digital assistance of analog circuits Time-locked loops Sigma-delta modulation					
Inline resources	http://moodleucl.uclouvain.be/enrol/index.php?id=2373					

Université catholique de Louvain - Modeling and implementation of analog and mixed analog/digital circuits and systems on chip - en-cours-2017-lelec2620

Bibliography	Supports
	Transparents disponibles sur Moodle Forum sur moodle
	Documents techniques sur Moodle
Faculty or entity in	ELEC
charge	

Université catholique de Louvain - Modeling and implementation of analog and mixed analog/digital circuits and systems on chip - en-cours-2017-lelec2620

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Aims			
Master [120] in Electro- mechanical Engineering	ELME2M	5		•			
Master [120] in Electrical Engineering	ELEC2M	5		© (