d'enseignement
- Mécanique des solides déformables sous chargements quasi-statiques : notions de base
- Théorie des poutres (« résistance des matériaux »)
- Stabilité et flambement de poutres
- Torsion de poutres
- Thermo-élasticité linéaire
- Introduction à la dynamique des systèmes élastiques: impacts, vibrations libres et forcées, résonance, amortissement, facteur d'amplification dynamique et déphasage, non-linéarité.
- Analyse modale de systèmes discrets: théorême spectral, fonction de réponse en fréquence, amortissement, troncature, méthode approchée de Rayleigh-Ritz.
- Analyse modale de systèmes continus: vibrations longitudinales et transversales d'une poutre.
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 | Eu égard au référentiel AA du programme « Master ingénieur civil mécaniciens », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants:
Au terme du cours, l'étudiant sera capable de modéliser et de calculer des solides et des structures sous deux classes fondamentales de sollicitations. La première est celle des chargements quasi-statiques, pour lesquels l¿étudiant pourra notamment étudier des structures de poutres élastiques dont la déformation est dominée par la flexion, ainsi que la stabilité de ces structures. L¿étudiant calculera aussi des poutres en torsion, ainsi que des solides sous sollicitations thermo-mécaniques. La seconde classe de problèmes concerne la réponse dynamique de systèmes élastiques simples et l¿application des modèles mathématiques appropriés à l'étude vibratoire de problèmes concrets tels que les suspensions de véhicules, l¿isolation vibratoire des machines tournantes ou l¿acoustique des intruments de musique. La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d¿enseignement (UE) ». |
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
- Notions de base en mécanique des solides déformables : rappels de mécanique des milieux continus, contraintes et déformations, équilibre et conditions frontière, élasticité linéaire et isotrope, critères de plasticité et de rupture, énergie de déformation, théorèmes énergétiques (travaux virtuels, énergies potentielle et complémentaire, théorèmes de Castigliano et de Maxwell-Betti), introduction aux méthodes numériques (Ritz, éléments finis de Galerkin)
- Théorie des poutres (« résistance des matériaux ») : hypothèses de Navier-Bernoulli, hypothèses sur la géométrie et les efforts externes, coupes fictives, contraintes et efforts internes (moment de flexion, effort tranchant et effort normal), conditions d'appui, calcul de stuctures isostatiques et hyperstatiques (essentiellement des poutres droites à plan de symétrie).
- Stabilité et flambement de poutres : approches directe et énergétique, charge critique de flambement par la méthode d'Euler, influences des conditions frontière, méthode énergétique approchée
- Torsion de poutres : torsion de sections simplement connexes par la théorie de Prandtl, application à une section circulaire et à des sections non-circulaires, cas de sections creuses
- Thermo-élasticité linéaire : généralisation de l'élasticité linéaire isotherme à la thermo-élasticité, équation de la chaleur, problèmes thermo-mécaniques, résolution découplée.
- Systèmes linéaires à un seul degré de liberté : vibrations libres non amorties, oscillateur harmonique, vibrations libres amorties, oscillations forcées, applications, transmission de vibrations aux fondations, isolation vibratoire, appareils de mesure.
- Systèmes discrets à N degrés de liberté : équations de Lagrange, identification des modes propres, Influence des conditions initiales sur les vibrations libres, réponse en fréquence lors de vibrations forcées, absorbeur dynamique, systèmes contraints, troncature et méthodes approchées d'analyse modale (Rayleigh, Rayleigh-Ritz).
- Systèmes continus : problèmes à valeurs propres, conditions aux limites, vibrations libres transversales et longitudinales d'une poutre.
des acquis des étudiants
en ligne
- Les notes de cours (syllabus et transparents) écrites par les enseignants sont disponibles sur moodle
- Doghri, Mechanics of deformable solids
- Meirovith, Analytical methods in Vibrations
- Tse, Morse, Hinkle, Mechanics Vibrations.
- Lalanne, Berthier, Der Hagopian, Mechanical Vibrations for Engineers.
- Craig R.R., Structural Dynamics.
- Dimaragonas, Vibration for Engineers.
- Geradin, Rixen, Théorie des Vibrations. Matière : Dynamique appliquée : 50.14.
en charge