LINMA2171

Numerical Analysis : Approximation, Interpolation, Integration

<table>
<thead>
<tr>
<th>Credits</th>
<th>5.0</th>
<th>Hours</th>
<th>30.0 h + 22.5 h</th>
<th>1q</th>
</tr>
</thead>
</table>

Teacher(s): Absil Pierre-Antoine

Language: Anglais

Place of the course: Louvain-la-Neuve

Prerequisites:

- Remark: LINMA2171 is the second part of a teaching programme in numerical analysis, of which LINMA1170 is the first part; however, LINMA1170 is not a prerequisite for LINMA2171.

Main themes:

- Interpolation
- Function approximation
- Numerical integration

Aims:

- AA1.1, AA1.2, AA1.3
 - At the end of the course, the student will be able to:
 - Implement, in concrete problems, the basic knowledge required from an advanced user and a developer of numerical computing software;
 - Analyze in depth various methods and algorithms for numerically solving scientific or technical problems, related in particular to interpolation, approximation, and integration of functions.

Transversal learning outcomes:

- Use a reference book in English;
- Use programming languages for scientific computing.

Evaluation methods:

- Homeworks, exercises, or laboratory work during the course semester
- Exam

Precisions are given in the course outline (plan de cours) available on iCampus & t; LINMA2171 & t; Documents et liens

Teaching methods:

- Lectures
- Homeworks, exercises, or laboratory work under the supervision of the teaching assistants

Content:

- Polynomial interpolation: Lagrange's interpolation formula, Neville's algorithm, Newton's interpolation formula, divided differences, Hermite interpolation.
- Interpolation by spline functions: cubic spline interpolation, B-splines.
- Rational interpolation.
- Trigonometric interpolation.
- Orthogonal polynomials: Legendre polynomials, Chebyshev polynomials.
- Polynomial minimax approximation: existence, de la Vallée-Poussin's theorem, equioscillation theorem, uniqueness, Chebyshev interpolation.
- Polynomial approximation in the least-squares sense.
- Integration of differential equations: introduction to the finite element method.
- Other topics related to the course themes.

Bibliography:
- Reference book
- Complementary documents posted on iCampus
- Precisions are given in the course outline (plan de cours) available on iCampus.

Faculty or entity in charge: MAP
<table>
<thead>
<tr>
<th>Intitulé du programme</th>
<th>Sigle</th>
<th>Credits</th>
<th>Prerequis</th>
<th>Acquis d'apprentissage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master [120] in Mathematical Engineering</td>
<td>MAP2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bachelor in Mathematics</td>
<td>MATH1BA</td>
<td>5</td>
<td>LMAT1121</td>
<td></td>
</tr>
</tbody>
</table>