LELEC2870

2016-2017

Machine Learning : regression, dimensionality reduction and data visualization

| 5.0 credits | 30.0 h + 30.0 h | 1q |

Teacher(s): Verleysen Michel ; Lee John (compensates Verleysen Michel) ;

Language: Anglais

Place of the course Louvain-la-Neuve

Main themes: Linear and nonlinear data analysis methods, in particular for regression and dimensionality reduction, including visualization.

Aims:

With respect to the AA referring system defined for the Master in Electrical Engineering, the course contributes to the development, mastery and assessment of the following skills:

- AA1.1, AA1.2, AA1.3
- AA3.1, AA3.2, AA3.3
- AA4.1, AA4.2, AA4.4
- AA5.1, AA5.2, AA5.3, AA5.5
- AA6.3

At the end of the course, students will be able to:

- Understand and apply machine learning techniques for data and signal analysis, in particular for regression and prediction tasks.
- Understand and apply linear and nonlinear data visualization techniques.
- Evaluate the performances of these methods with appropriate techniques.
- Choose between existing methods on the basis of the nature of data and signals to be analyzed.

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.

Evaluation methods: Closed book oral examination, or written examination (depending on the number of students)

Teaching methods: Lectures, exercises, practical sessions on computers, project to be carried out individually or by groups of 2 students

Content:

- Linear regression
- Nonlinear regression with multi-layer perceptrons
- Clustering and vector quantization
- Nonlinear regression with radial-basis function networks
- Probabilistic regression
- Ensemble models
- Model selection
- Principal Component Analysis
- Nonlinear dimensionality reduction and data visualization
- Independent Component Analysis
- Kernel methods

Bibliography: Reference books (not mandatory) mentioned on the website of the course
<p>| Faculty or entity in charge: | ELEC |</p>
<table>
<thead>
<tr>
<th>Intitulé du programme</th>
<th>Sigle</th>
<th>Credits</th>
<th>Prerequis</th>
<th>Acquis d'apprentissage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master [120] in Mathematical Engineering</td>
<td>MAP2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Electrical Engineering</td>
<td>ELEC2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Biomedical Engineering</td>
<td>GBIO2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Computer Science</td>
<td>SINF2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Computer Science and Engineering</td>
<td>INFO2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Environmental Bioengineering</td>
<td>BIRE2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Statistics: General</td>
<td>STAT2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Forests and Natural Areas Engineering</td>
<td>BIRF2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Agricultural Bioengineering</td>
<td>BIRA2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Chemistry and Bioindustries</td>
<td>BIRC2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT2FC</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>