LELEC2650

2016-2017

Synthesis of analog integrated circuits

5.0 credits 30.0 h + 30.0 h 1q

Teacher(s) : Flandre Denis ;

Language : Anglais

Place of the course Louvain-la-Neuve

Inline resources:
Moodle

Prerequisites:
LELEC2532 or equivalent

The prerequisite(s) for this Teaching Unit (Unité d'enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.

Main themes:
This course addresses the synthesis of analog integrated circuits, that is the design and sizing at transistor level of the main analog electronics components integrated on Si, in view of applications in instrumentation, telecommunication, signal processing ... This course aims at presenting the state-of-the art (architectural solutions, performances and limitations) and at further providing an advanced design methodology.

Aims:
With respect to the AA referring system defined for the Master in Electrical Engineering, the course contributes to the development, mastery and assessment of the following skills:

AA1.1, AA1.2, AA1.3
AA2.1, AA2.2, AA2.3, AA2.4, AA2.5
AA3.1, AA3.2, AA3.3
AA5.3, AA5.4, AA5.5
AA6.1, AA6.3

At the end of this course, the student will be able to:

Derive the mathematical relationships between the performances of the main integrated analog functions and the sizing of the transistors of the circuits.
Apply these concepts to the optimal synthesis of such circuits in CMOS technology.
Use to this aim, the appropriate professional methodologies and software CAD tools.
Analyze and develop a critical view on standard and advanced implementations proposed in the technical and scientific literature.
Understand, compare, and discuss different solutions proposed for actual applications.

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".

Evaluation methods:
The exam features two parts:
The realization of an original work in groups of 2 students during the 2nd semi-quadrimester on the analysis of a case study, on the basis of technical articles and the practice on this case, of the methods and techniques of synthesis of the course. A written report must be delivered for the start of the January exam session and is orally discussed during the written exam. The written exam is individual and open-book. Main questions are on the analysis of a technical article (explanations of concepts, equations and performances; proposition of a sizing algorithm). In addition, a few short questions are on important concepts discussed in the course.

Teaching methods:
The course is organized in successive theoretical and practical sessions. Exercises are mainly hands-onand consist in training and use of computer-aided design softwares on workstations (MATLAB, SPICE / ELDO, CADENCE...) in view of practicing taught optimization and simulation methods and techniques in practical application case studies.

Content:
Analog modelling of the MOS transistor
Operational and transconductance amplifiers

Switched-capacitor filters

Continuous-time filters (MOSFET-C, gm-C)

Switched-current circuits

D-A, A-D converters (incl. Sigma-Delta)

Voltage- or current- controlled oscillators

The details of the internal architecture and of the operation of analog CMOS basic blocks and circuits are studied in the cases of actual integrated systems. Design and optimisation strategies are derived in order to achieve the performance specifications of target applications. Advanced computer-aided analysis and synthesis techniques are introduced. Practical case studies are presented or implemented in the frame of exercise sessions.

Bibliography	Course support on Moodle
	Copies of slides
	Chapters of thesis
	Reference books and articles available in library or on internet

| Other infos | This course assumes that basic notions of fundamental electronics devices and circuits have been acquired at Bac Level, such as in LELEC1330 and LELEC1530. The course is primarily aimed at students in 2nd year of Master ELEC or ELME preferably after following the course LELEC2532.

<p>| Faculty or entity in charge | ELEC |</p>
<table>
<thead>
<tr>
<th>Intitulé du programme</th>
<th>Sigle</th>
<th>Credits</th>
<th>Préréquis</th>
<th>Acquis d'apprentissage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master [120] in Electro-mechanical Engineering</td>
<td>ELME2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Electrical Engineering</td>
<td>ELEC2M</td>
<td>5</td>
<td>LELEC2532</td>
<td></td>
</tr>
</tbody>
</table>