Séries chronologiques

LSTAT2170  2016-2017  Louvain-la-Neuve

Séries chronologiques
5.0 crédits
22.5 h + 7.5 h
2q

Enseignants
von Sachs Rainer;
Langue
d'enseignement
Français
Thèmes abordés

Les principaux thèmes de cette introduction aux séries chronologiques incluent la modélisation, l'estimation et la prédiction de deux types de processus - les processus linéaires et les modèles hétéroscédastiques non-linéaires. L'approche pour les deux modélisations sera essentiellement paramétrique - l'étudiant va apprendre comment quantifier l'incertitude statistique en estimation des paramètres du modèle stochastique pour la série observée dans le problème de l'objectif ultimatif, la prédiction des valeurs futures de cette série.

Acquis
d'apprentissage

A. Eu égard au référentiel AA du programme de master en statistique, orientation générale, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.2, 2.2, 2.3, 3.2, 3.3.

Eu égard au référentiel AA du programme de master en statistique, orientation biostatistique, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.2, 2.2, 2.3, 3.2, 3.3.

B. Après avoir suivi ce cours, l'étudiant aura acquis une compréhension logique et une maîtrise opérationnelle des modèles stochastiques utilisables pour la prévision quantitative des séries chronologiques. Il sera capable d'appliquer les principes de l'analyse Box-Jenkins et la modélisation (G')ARCH aux données réelles.

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».

Contenu
Contenu - Modélisation des séries chronologiques : introduction - Processus linéaires - modèles paramétriques simples (ARMA) - Estimation et prédiction dans des modèles ARMA - Méthodologie de Bok et Jenkins - modèle (S) ARIMA - Processus non-linéaires - modèles hétéroscédastiques (G)ARCH - Application dans le domaine des finances. Méthode Des modèles de base pour des processus linéaires seront discutés dans la première partie du cours. L'analyse des données observées à l'aide de l'estimation des paramètres du modèle ajusté se fera essentiellement avec les méthodes selon Box-Jenkins. Un traitement en pratique sur ordinateur va accompagner le développement théorique. Dans la deuxième partie du cours, on discutera quelques éléments de la modélisation non linéaires du type ARCH et GARCH avec des applications dans le domaine des données financières. Cette partie sera inclue dans l'analyse pratique sur ordinateur (à l'aide du logiciel S-Plus).
Autres infos
Pré-requis Une connaissance générale des concepts de base de la statistique (du niveau d'un premier cours introductif en statistique). Evaluation L'examen se réalise comme une interrogation orale. La réalisation d'un travail pratique sur ordinateur est prévue. Support Syllabus, von Sachs, R. and S. Van Bellegem, script. Ouvrages de référence Brockwell, P. and R. Davis (1996), Introduction to Time Series and Forecasting. Springer, New York Brockwell, P and R. Davis (1991), Time Series, Theory and Methods. Springer, New York Gourieroux, Ch. (1992), Modèles ARCH et applications financières. Economica, Paris
Faculté ou entité
en charge


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] : ingénieur civil biomédical
5
-

Master [120] en sciences économiques, orientation générale
5
-

Master [120] en sciences actuarielles
5
-

Master [120] en statistiques, orientation biostatistique
5
-

Master [120] en statistiques, orientation générale
5
-

Master [120] : ingénieur civil en mathématiques appliquées
5
-

Certificat d'université : Statistique (15/30 crédits)
5
-