Eléments de statistique bayésienne

LSTAT2130  2016-2017  Louvain-la-Neuve

Eléments de statistique bayésienne
4.0 crédits
15.0 h + 5.0 h
2q

Enseignants
Lambert Philippe;
Langue
d'enseignement
Français
Thèmes abordés

- Le modèle bayesien: principes généraux. - La fonction de vraisemblance et spécification a priori. - Modèles à un paramètre: choix de la distribution a priori, calcul de la distribution a posteriori, résumer la distribution a posteriori. - Modèles multiparamètres: choix des distributions a priori et calcul des distributions a posteriori, paramètres de nuisance. Cas des modèles multinomial et gaussien multivarié. - Inférence en grand échantillon et relation avec l'inférence fréquentiste. - Méthodes de calcul en analyse bayesienne.

Acquis
d'apprentissage

A. Eu égard au référentiel AA du programme de master en statistique, orientation générale, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.1, 1.3, 1.4, 2.2, 2.3, 2.5, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 6.3

Eu égard au référentiel AA du programme de master en statistique, orientation biostatistique, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.1, 1.3, 1.4, 2.2, 2.3, 2.5, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3, 4.5, 6.3

B. Au terme du cours l'étudiant aura acquis les principes et les techniques de base de la statistique bayesienne, et sera capable de les utiliser et de mettre en évidence leurs avantages et inconvénients dans des problèmes simples.

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».

Contenu
- Le modèle bayesien: principes généraux. - La fonction de vraisemblance et spécification a priori. - Modèles à un paramètre: choix de la distribution a priori, calcul de la distribution a posteriori, résumer la distribution a posteriori. - Modèles multiparamètres: choix des distributions a priori et calcul des distributions a posteriori, paramètres de nuisance. Cas des modèles multinomial et gaussien multivarié. - Inférence en grand échantillon et relation avec l'inférence fréquentiste. - Méthodes de calcul en analyse bayesienne.
Autres infos
Ouvrages de référence Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003,2nd edition) Bayesian Data Analysis. Chapman and Hall. Spiegelhalter, D.J., Thomas, A. and Best, N.G. (1999) WinBUGS User Manual. MRC Biostatistics Unit. Bolstad, W.M.(2004) Introduction to Bayesian Statistics. Wiley.
Faculté ou entité
en charge


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Mineure en statistique
4
-

Master [120] : ingénieur civil biomédical
4
-

Master [120] en sciences économiques, orientation générale
5
-

Master [120] : ingénieur civil en mathématiques appliquées
4
-

Master [120] en sciences biomédicales
4
-

Master [120] en statistiques, orientation générale
4
-

Approfondissement en sciences mathématiques
4
-

Master [120] en statistiques, orientation biostatistique
4
-

Master [120] en sciences mathématiques
4
-

Master [120] en ingénieur de gestion
5
-

Master [120] en ingénieur de gestion
5
-

Certificat d'université : Statistique (15/30 crédits)
4
-