

LELEC2895

2016-2017

Design of Micro and Nanosystems

5.0 crédits	30.0 h + 30.0 h	1q
-------------	-----------------	----

Enseignants:	Pardoen Thomas ; Flandre Denis ; Raskin Jean-Pierre ; Francis Laurent (coordinateur) ;					
Langue d'enseignement:	Anglais					
Lieu du cours	Louvain-la-Neuve					
Ressources en ligne:	Moodle					
	> http://moodleucl.uclouvain.be/course/view.php?id=7527					
Thèmes abordés :	Ce cours s'inscrit dans l'offre de cours ELEC en MEMS & mp; NEMS, micro et nanotechnologies. LELEC2895 est consacré à la compréhension et à la conception de dispositifs micro-électromécaniques (MEMS), aux transducteurs (capteurs, actuateurs) réalisés dans des technologies de micro et nanofabrication, à leur co-intégration aux circuits intégrés, à leurs simulations et caractérisations multiphysiques, à leur fiabilité et à leur interconnexion.					
Acquis d'apprentissage	Eu égard au référentiel AA du programme « Master ingénieur civil électriciens», ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :					
	AA1.1, AA1.2, AA1.3					
	AA2.1, AA2.2, AA2.3, AA2.4, AA2.5					
	AA3.1, AA3.2, AA3.3					
	A44.2, AA4.3, AA4.4					
	AA5.1, AA5.2, AA5.3, AA5.4, AA5.5, AA5.6					
	AA6.1, AA6.3, AA6.4 À l'issue de ce cours, l'étudiant sera en mesure de :					
	Décrire les principes de transduction et les effets d'échelle					
	Interpréter un cahier des charges de conception d'un MEMS					
	Concevoir des MEMS et NEMS et utiliser des outils pour la simulation multiphysique					
	Identifier les circuits électroniques adaptés aux MEMS et NEMS					
	Identifier les techniques de fabrication nécessaire à l'obtention de ces dispositifs et catégoriser les problèmes d'origine thermomécaniques qui conditionnent le bon fonctionnement d'un MEMS					
	Analyser la fiabilité des dispositifs miniaturisés					
	Présenter par écrit (rapport) et oralement (transparents) les résultats d'un projet de groupe (de 2 à 4 étudiants) La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d'enseignement (UE) ».					
Modes d'évaluation des acquis des étudiants :	L'évaluation du projet se base sur le contenu et la forme d'un rapport écrit et d'une présentation orale réalisés par groupe. L'examen se déroule à livre ouvert.					
Méthodes d'enseignement :	Le cours est typiquement organisé en 8 séances de cours 3 séances d'exercices encadrés 2 séances de tutoriel permettant de couvrir les outils logiciels utiles au projet 1 séance de séminaire industriel 1 projet de conception de MEMS réalisé par groupe (2 à 4 étudiants) et encadré, ce projet doit répondre à un cahier des charges donné.					

Université Catholique de Louvain - DESCRIPTIF DE COURS 2016-2017 - LELEC2895

Contenu :	1. Méthodologie de conception de MEMS 2. Effets d'échelle et principes de transduction 3. Capteurs et actuateurs: électriques, mécaniques, thermiques, optiques, (bio)chimiques, etc 4. Procédés de micro et de nanofabrication 5. Co-intégration des MEMS avec les circuits de la technologie CMOS 6. Interconnections et encapsulation 7. Simulations multiphysiques et caractérisationS
Bibliographie :	Supports
	Transparents disponibles sur Moodle
	Livre de référence disponible à la BST (Ville Kaajakari, "Practical MEMS", Small Gear Publishing)
Autres infos :	Le cours LELEC2560 Micro and Nanofabrication Techniques est un pré-requis utile. Des connaissances de base en électronique, physique du solide, science des matériaux et chimie sont un avantage.
Faculté ou entité en charge:	ELEC

Programmes / formations proposant cette unité d'enseignement (UE)							
Intitulé du programme	Sigle	Crédits	Prérequis	Acquis d'apprentissage			
Master [120] : ingénieur civil en chimie et science des matériaux	KIMA2M	5	-	٩			
Master [120] : ingénieur civil physicien	FYAP2M	5	-	٩			
Master [120] : ingénieur civil électricien	ELEC2M	5	-	٩			
Master [120] : ingénieur civil électromécanicien	ELME2M	5	-	Q			