Operations Management and Factory Physics (in English)

LLSMS2032

<table>
<thead>
<tr>
<th>Credits</th>
<th>Hours</th>
<th>Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>30.0</td>
<td>2q</td>
</tr>
</tbody>
</table>

Teacher(s): Corluy Olivier (compensates Chevalier Philippe) ; Chevalier Philippe ;

Language: Anglais

Place of the course: Louvain-la-Neuve

Prerequisites:
- an introductory course in operations management
- a probability course

Main themes:
This course presents the key underlying principles that drive operations efficiency in a factory, in services or in a supply chain. These principles can be used to gain valuable insight for complex real-life problems.

Aims:

1. **Corporate citizenship**
 - 1.1. Demonstrate independent reasoning, look critically
 - 1.3. Decide and act responsibly

2. **Knowledge and reasoning**
 - 2.1. Master the core knowledge of each area of management.
 - 2.2. Master highly specific knowledge
 - 2.4. Activate and apply the acquired knowledge
 - 2.5. Master highly specific knowledge

3. **A scientific and systematif approach**
 - 3.1. Conduct a clear, structured, analytical reasoning
 - 3.2. Collect, select and analyze relevant information
 - 3.3. Consider problems using a systemic and holistic approach
 - 3.4. Perceptively synthesize 'demonstrating a certain conceptual distance

4. **Innovation and entrepreneurship**
 - 4.1. Identify new opportunities, propose creative and useful ideas
 - 4.4. Reflect on and improve professional practices.

5. **Work effectively in an international and multicultural environment**
 - 5.1. Understand the inner workings of an organization

6. **Teamwork and leadership**
 - 6.1. Work in a team...

7. **Project management**
 - 7.1. Analyse a project within its environment and define the expected outcomes
 - 7.2. Organize, manage and control the process
 - 7.3. Make decisions and take responsibility for them in an uncertain world

8. **Communication and interpersonal skills**
 - 8.1. Express a clear and structured message
 - 8.2. Interact and discuss effectively
 - 8.3. Persuade and negotiate

9. **Personal and professional development**
 - 9.1. Independent self-starter
 - 9.4. Quick study, lifelong learner

Evaluation methods:
- Homeworks
- Case study
- Written exam (open book)

Teaching methods:
- Lectures
- Exercices/PT
- Problem based learning
- Company visit
- Real life case study in a company

Content:
- ANALYZING AND UNDERSTANDING THE EFFECT OF VARIABILITY FOR OPERATIONS MANAGEMENT
 - Variability basics
 - Push and Pull production systems
 - Total quality
 - Development of simulation models for production systems
 - MANAGING OPERATIONS IN A PLANT
| Pull models |
| Shop floor controls and scheduling |
| MANAGING OPERATIONS FOR SERVICES |
| Queueing models |
| Non-stationary systems |
| MANAGING OPERATIONS IN A SUPPLY CHAIN |
| Managing inventory |
| Managing capacity |
| Managing time |
| At home activities: |
| 1 Exercices to prepare the lecture |
| 1 Paper work |

Bibliography:

: No TEXTBOOK. SLIDES compulsory. BOOK: Factory Physics, W. Hopp, M. Spearman, Mc Graw-Hill, 2008 compulsory and available on line. Supports available on line are on ICAMPUS.

Other Infos:

- Other information
- Prerequisites (ideally in terms of competencies)
 - Introduction to operations management, production management and operations research.
- Evaluation:
 - Case solutions, class participation and an oral exam
- Support
- References:
 - Provided during the class
- Internationalisation:
 - 1 international content (does the course tackle international issues related to the course content?)
 - 1 international guests
 - 1 international case study
- Corporate features:
 - 1 case study
 - 1 company visit
- Skills:
 - 1 team work
 - 1 problem solving
 - 1 decision making
 - 1 project management
 - 1 critical thinking
- Techniques and tools for teaching and learning:
 - 1 modeling
 - 1 simulation
 - 1 quantitative methods
 - 1 mathematics

Faculty or entity in charge:

- CLSM
Programmes / formations proposant cette unité d'enseignement (UE)

<table>
<thead>
<tr>
<th>Intitulé du programme</th>
<th>Sigle</th>
<th>Credits</th>
<th>Prerequis</th>
<th>Acquis d'apprentissage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master [120] in Business Engineering</td>
<td>INGM2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Master [120] in Business engineering</td>
<td>INGE2M</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>