<- Archives UCL - Programme d'études ->



Data Mining [ MQANT2113 ]


5.0 crédits ECTS  30.0 h + 0.0 h   1q 

Teacher(s) Meskens Nadine ;
Language French
Place
of the course
Mons
Main themes
- Introduction to Data Mining 
- Knowledge discovery process
- Decision tree : algorithms CART and ID3
- Cross-validation, bootstrap
- Tree pruning
- bagging,  boosting, arcing
- Random forest
- ROC curves
- Market basket analysis
- Neural network
- Cluster analysis : Hierarchical methods, K-means
- Rough sets
- Trends in data mining
- Software : TANAGRA et SAS enterprise Miner
- Applications
 
Aims
Evaluation methods

Oral examination

Teaching methods
  • Lectures
  • Course-related exercises
  • Use of software
  • Case studies 
Bibliography
  • HAN J., KAMBER M. (2006), Data mining:concepts and techniques, 2nd ed.Morgan Kaufmann.
  • TUFFERY S. (2007), Data Mining et statistique décisionnelle :l'intelligence dans les bases de données, Technip. 
Cycle et année
d'étude
> Master [120] in Business engineering
> Master [120] in Business Engineering
Faculty or entity
in charge
> BLSM


<<< Page précédente