Contribution of the course to learning outcomes in the Bachelor in Mathematics programme. By the end of this activity, students will have made progress in:
- Recognise and understand a basic foundation of mathematics.
'- Choose and use the basic tools of calculation to solve mathematical problems.
'- Recognise the fundamental concepts of important current mathematical theories.
- Show evidence of abstract thinking and of a critical spirit.
'- Argue within the context of the axiomatic method Recognise the key arguments and the structure of a proof.
'- Construct and draw up a proof independently.
'- Evaluate the rigour of a mathematical or logical argument and identify any possible flaws in it.
'- Distinguish between the intuition and the validity of a result and the different levels of rigorous understanding of this same result.
Learning outcomes specific to the course. By the end of this activity, students will be able to:
- To work with probabily measures, random variables and their distributions in an abstract framework.
- Prove and apply the convergence of a sequence of random variables : almost surely, in probability and in distribution.
- Prove and apply the independence of a family of sigma-fields or random variables.
- Make connections between probability theory and other branches of mathematics, in particular measure theory, complex analysis and functional analysis.
|