Contribution of the course to learning outcomes in the Bachelor in Mathematics programme. By the end of this activity, students will have made progress in:
- Recognising and understanding a basic foundation of mathematics.
-- Choosing and using the basic tools of calculation to solve mathematical problems.
-- Recognising the fundamental concepts of important current mathematical theories.
-- Establishing the main connections between these theories, analysing them and explaining them through the use of examples.
- Identifying, by use of the abstract and experimental approach specific to the exact sciences, the unifying features of different situations and experiments in mathematics or in closely related fields (probability and statistics, physics, computing).
- Showing evidence of abstract thinking and of a critical spirit :
-- Arguing within the context of the axiomatic method, recognising the key arguments and the structure of a proof, constructing and drawing up a proof independently.
-- Evaluating the rigour of a mathematical or logical argument and identifying any possible flaws in it.
-- Distinguishing between the intuition and the validity of a result and the different levels of rigorous understanding of this same result.
Learning outcomes specific to the course. By the end of this activity, students will be able to:
- Factor multivariate polynomials into irreducible factors.
- Analyse systems of algebraic equations to determine whether they admit solutions and to represent them geometrically.
- Find equations with a given parametrised set of solutions.
- Analyse the structure of modules over a principal ideal domain.
- Reduce linear operators over a finite-dimensional vector space to canonical forms.
|