Contribution of the course to learning outcomes in the Bachelor in Mathematics programme. By the end of this activity, students will be able to:
Recognise and understand a basic foundation of mathematics.
Choose and use the basic tools of calculation to solve mathematical problems.
Recognise the fundamental concepts of important current mathematical theories.
Establish the main connections between these theories, analyse them and explain them through the use of examples.
Show evidence of abstract thinking and of a critical spirit.
Argue within the context of the axiomatic method. Recognise the key arguments and the structure of a proof.
Distinguish between the intuition and the validity of a result and the different levels of rigorous understanding of this same result.
Learning outcomes specific to the course.
The general goal of the course is to introduce the student to the notion and the tools of probability theory and statistical analysis, with a view towards applications. By the end of the course, students will be able to:
Use the basic notions of probabilistic modelling, being able to worki with random variables:
Apply the most frequently used techniques of probability theory (conditional probabilities and expectation, normal, Poisson and exponential laws) in various fields of application
Explore structured data sets by the methods of statistical inference
Apply the techniques of confidence intervals and hypothesis testing
|