

LINMA2491

2014-2015

Operational Research

5.0 credits	30.0 h + 22.5 h	2q
-------------	-----------------	----

Teacher(s) :	Papavasiliou Anthony ;
Language :	Anglais
Place of the course	Louvain-la-Neuve
Inline resources:	> http://icampus.uclouvain.be/claroline/course/index.php?cid=LINMA2491
Prerequisites :	 Fluency in English at the level of course LANGL1330
	Linear programming , integer programming
	Familiarity with probability theory
	Familiarity with math programming languages (AMPL, Mosel)
Main themes :	Mathematical background (duality, KKT optimality conditions, monotone operators)
	Mathematical programming models and languages
	Applications: finance, logistics, risk management, energy
Aims :	In reference to the AA standard, this course contributes to the development, acquisition and evaluation of the following learning outcomes: AA1.1, AA1.2, AA1.3
	 AA2.2, AA2.5
	At the end of the course, students will be able to:
	Formulate problems of decision-making under uncertainty as mathematical programs
	Identify structure in large-scale mathematical programs that enables their decomposition
	Design algorithms for solving large-scale optimization problems under uncertainty
	Implement algorithms for solving large-scale optmization problems in AMPL
	Evaluate the quality of policies for making decisions under uncertainty The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".
Evaluation methods :	 Written exam
	Course project and regular homework assignments
Teaching methods :	2 hours of magistral courses per week, and 2 hours of training sessions per week. Homeworks and term projects will be evaluated by the instructor and/or the teaching assistant.
Content :	Stochastic programming models
	Value of perfect information and the value of the stochastic solution
	The L-shaped method in two and multiple stages
	Multi-cut L-shaped algorithm
	Stochastic dual dynamic programming

Université Catholique de Louvain - COURSES DESCRIPTION FOR 2014-2015 - LINMA2491

	Scenario selection and importance sampling Lagrangian relaxation Stochastic integer programming
	Monotone operators, proximal point algorithms and progressive hedging
	Course notes Printouts from textbooks or archived journals will be provided during lectures. The following textbook will be followed closely for most of the course: John Birge, Francois Louveaux, "Introduction to Stochastic Programming"
Cycle and year of study:	> Master [120] in Mathematical Engineering
Faculty or entity in charge:	MAP