

LINMA2460

2014-2015

Optimization : Nonlinear programming

5.0 credits	30.0 h + 22.5 h	2q
-------------	-----------------	----

Teacher(s) :	Nesterov Yurii ;
Language :	Anglais
Place of the course	Louvain-la-Neuve
Inline resources:	The full syllabus (in English) can be downloaded from the web page of the course.
Prerequisites :	LFSAB1102 (Mathématiques 2) Basic knowledge of Nonlinear Analysis and Linear Algebra. The target audience is the students interested in scientific computing, machine learning and optimization in engineering.
Main themes :	General nonlinear optimization Smooth and non-smooth convex optimization Interior-point methods.
Aims:	Learning outcomes:
Evaluation methods :	In the written exam (in English or French) there are four questions, one for each chapter of the course (up to 5 points for each question). The marks for the exam and the exercises are combined in the final mark.
Teaching methods :	The course is given in 12-15 lectures. The computer projects are implemented by the students themselves with supporting consultations.
Content :	General problem of nonlinear optimization. Black-box concept. Iterative methods and analytical complexity. Gradient method and Newton method. Local complexity analysis Convex optimization: convex sets and functions; minimization of differentiable and non-differentiable convex functions; lower complexity bounds; optimal methods

Université Catholique de Louvain - COURSES DESCRIPTION FOR 2014-2015 - LINMA2460

	Interior-point methods: notion of self-concordant functions and barriers; path-following methods; structural optimization.
	Yu.Nesterov. "Introductory lectures on convex optimization. Basic course", Kluwer 2004 P. Polyak, « Introduction in optimization », J. Willey & mp; Sons, 1989 Yu. Nesterov, A. Nemirovsky, « Interior-point polynomial algorithms in nonlinear optimization », SIAM, Philadelphia, 1994.
Cycle and year of study:	> Master [120] in Mathematical Engineering
Faculty or entity in charge:	MAP