

LINMA2361

2014-2015

Nonlinear dynamical systems

5.0 credits	30.0 h + 22.5 h	1q
-------------	-----------------	----

Teacher(s) :	Absil Pierre-Antoine ;
Language :	Français
Place of the course	Louvain-la-Neuve
Inline resources:	≥ http://icampus.uclouvain.be/claroline/course/index.php?cid=INMA2361
Prerequisites :	LFSAB1102 (Mathématiques 2): basic notions in topology, linear operators, linear differential equations with constant coefficients, unconstrained optimization, and vector calculus. LFSAB1106 (Mathématiques appliquées: signaux et systèmes): basic notions in signals and systems, including state space representation and stability
Main themes :	The course is an introduction to the analysis and synthesis of nonlinear dynamical systems. The mathematical tools are illustrated on different applications, preferentially in the fields of neurodynamics, nonlinear control, and physics. Further specific illustrations are presented by the students at the end of the course.
Aims :	At the end of the course, the student will be able to:
	Make adequate use of basic mathematical tools to model, analyze, and design nonlinear dynamical systems, in areas such as neurodynamics, nonlinear control, and physics. Transversal learning outcomes:
	Use a reference book in English;
	Discuss and criticize research articles ;
	Report in writing and present the results orally. The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".
Evaluation methods :	Homeworks, exercices, or laboratory work during the course semester
	Written report and oral presentation of a project, including a bibliographical part (article or book chapter reading) and computer
	illustrations of the theory. Precisions are given in the course outline (plan de cours) available on iCampus & t; LINMA2361 & t; Documents et liens
Teaching methods :	 Lectures.
	Homeworks, exercices, or laboratory work to be carried out individually or in small groups.
Content :	Introduction to nonlinear phenomena
	Multiple equilibrium points and systems in the plane
	 Lyapunov functions, gradient systems, stability
	 Limit cycles
	Hopf bifurcations, asymptotic methods
	Introduction to chaos Depending on the choice of the course book, some of the following themes may also be touched:
	Introduction to dynamical models in neuroscience
	Simple neural computation models, Hopfield networks
	Stabilization of equilibrium points

Université Catholique de Louvain - COURSES DESCRIPTION FOR 2014-2015 - LINMA2361

	Coupled oscillators, synchronization phenomena, and collective motions Input-output tools for nonlinear system analysis
	Reference book Complementary documents posted on iCampus Precisions are given in the course outline (plan de cours) available on iCampus.
Cycle and year of study :	> Master [120] in Physics > Master [120] in Biomedical Engineering > Master [120] in Mathematical Engineering > Master [120] in Electro-mechanical Engineering
Faculty or entity in charge:	MAP