UCL LINGI1101A Université catholique

de Louvain

Discrete mathematics: logical foundations of computing science

5.0 credits

2014-2015

30.0 h + 30.0 h

1q

Teacher(s) :	Van Roy Peter ;
Language :	Français
Place of the course	Louvain-la-Neuve
Inline resources:	> http://icampus.uclouvain.be/claroline/course/index.php?cid=ingi1101
Prerequisites :	Within SINF1BA : LSINF1250 Within FSA1BA : LFSAB1101, LFSAB1102, LFSAB1401, (LFSAB1301, LFSAB1201, LFSAB1202)
Main themes :	Part I: Propositional logic and predicate logic
	Propositional logic (syntax, semantics, proofs)
	 Predicate logic (quantifiers, bound and free variables, proofs) and application to algorithm analysis
	Set theory and application to formal system specification (Z notation)
	 Relations and applications in computer science (relational databases, overriding, binary relations, ')
	Functions and lambda calculus Part II: Discrete structures
	 Graphs (basic concepts, paths and connectivity)
	 Applications of graphs, e.g., to model social networks (ties, homophily, closure)
	 Graphs and properties of graphs used to model Internet-based networks
	 Introduction to game theory
Aims :	Given the learning outcomes of the "Bachelor in Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:
	AA2.4 Given the learning outcomes of the "Bachelor in Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:
	S1.I1, S1.G1
	S2.2
	Students completing this course successfully will be able to
	convert ordinary language statements into logical expressions using the syntax and semantics of propositional or predicate logic
	use rules of inference to construct proofs in propositional or predicate logic
	describe how symbolic logic can model real-life situations , such as those encountered in the context of computing (eg analysis algorithms)
	 identify and define precisely the basic concepts of graphs and trees providing contextualized examples that highlight these concepts
	explain various methods of graph paths
	 model various real-world problems encountered in computer using the appropriate forms of graphs and trees, such as social networks and the Web
	 explain the key concepts of the theory of games (game type, the type of policy agents) using appropriate examples Students will have developed skills and operational methodology. In particular, they have developed their ability to

Université Catholique de Louvain - COURSES DESCRIPTION FOR 2014-2015 - LINGI1101A

	 define and interpret concepts with rigor and precision
	avoid misinterpretation and detect errors in reasoning . The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".
Evaluation methods :	 short test during the semester
	written exam
Teaching methods :	 2h of lecture / week 2h of exercise sessions / week
Content :	 Preliminaries: sets, relations, and functions; formal systems.
	Mathematical logic:
	 proposition calculus syntax, semantics, proof theory;
	first-order predicate calculus syntax, semantics, proof theory, resolution and refutation;
	 first-order theoriesmodels, consistency, inclusion, extension, etc.
	 Equational theories: equality, partial orders, lattices, groups.
	Discrete structures on the Internet: graphs and graph properties, giant components, strong and weak links, triadic closure, structural balance, balance theorem, structure of the Web, PageRank, power laws, the long tail. Applications to various domains : program verification, specification of abstract data types, automated reasoning, expert systems, robotics, databases, parsing, etc.
Bibliography :	Slides on icampus Books :
	Introductory Logic and Sets for Computer Scientists by Nimal Nissanke
	Networks, Crowds and Markets: Reasoning About a Highly Connected World by David Easley and Jon Kleinberg,
Other infos :	Background :
	Elementary discrete mathematics (functions, sets,)
	Use of different techniques of mathematical proof
Cycle and year of study :	> Preparatory year for Master in Computer science
Faculty or entity in charge:	INFO