

LELEC2895

2014-2015

Design of micro and nanosystems

5.0 credits

30.0 h + 30.0 h

1

1q

Teacher(s) :	Flandre Denis ; Pardoen Thomas ; Francis Laurent (coordinator) ; Raskin Jean-Pierre ;
Language :	Anglais
Place of the course	Louvain-la-Neuve
Inline resources:	> http://icampus.uclouvain.be/claroline/course/index.php?cid=ELEC2895
Main themes :	This cursus is part of the MEMS & mp; NEMS, Micro and Nanotechnology ELEC options. LELEC2895 is focused on the understanding and the design of micro-electromechanical devices (MEMS), on transducers (sensors, actuators) made using micro and nanofabrication technologies, to their co-integration with integrated circuits (IC), to their multiphysics simulation and characterisation, to their reliability and their interconnect.
Aims :	a. Contribution of the activity to the learning outcomes of the program 1 (1.1, 1.2, 1.3), 2 (2.1, 2.2, 2.3, 2.4, 2.5), 3 (3.1, 3.2, 3.3), 4 (4.2, 4.3, 4.4), 5 (5.1, 5.2, 5.3, 5.4, 5.5, 5.6), 6 (6.1, 6.3, 6.4) b. After this cursus, the student will be able to:
	Describe the transduction principles and scaling effects
	Understand specifications for a MEMS
	Design MEMS and NEMS and use multiphysics simulation softwares and tools
	Identify electronic circuits adapted to MEMS and NEMS
	Identify fabrication techniques required to make such devices
	Analyse the reliability of miniaturised devices
	Present (report) and defend (slides) the results of a group project (with 2 to 4 students) The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".
Evaluation methods :	The project evaluation is based on the style and content of a written report and an oral presentation made by group. The exam is an open book format.
Teaching methods :	The course is organised as following 8 sessions of theoretical lectures 3 sessions of exercices 2 tutorial sessions to become acquainted with the software required for the project
Content :	 MEMS design methodology Scale effects and transduction principles Sensors and actuators: electrical, mechanical, thermal, optical, (bio)chemical, etc Fabrication processes MEMS and CMOS technology circuits co-integration Interconnections and packaging Multiphysics simulations and characterizations
Bibliography :	Supports
	Slides available on iCampus
	Reference books available at the library BST
Other infos :	materials science and chemistry is an advantage.

Cycle and year of study :	 Master [120] in Electrical Engineering Master [120] in Physical Engineering Master [120] in Chemical and Materials Engineering Master [120] in Electro-mechanical Engineering
Faculty or entity in charge:	ELEC