<- Archives UCL - Programme d'études ->



Analyse des données discrètes [ LSTAT2100 ]


5.0 crédits ECTS  22.5 h + 7.5 h   2q 

Enseignant(s) El Ghouch Anouar ; Bogaert Patrick ;
Langue
d'enseignement:
Français
Lieu de l'activité Louvain-la-Neuve
Thèmes abordés - Distribution multinomiale (marginales, conditionnelles et propriétés asymptotiques). - Tables de contingence à deux critères : indépendance et homogénéité, mesures d'association et tests particuliers (Fisher, Mac Nemar,...). - Tables de contingence à plusieurs critères : indépendance mutuelle, partielle et conditionnelle. - Modèles log-linéaires. - Modèles conditionnels * Principes généraux * Modèle linéaire généralisé * Modèles probit et logit. - Analyse discriminante multinomiale, sélection de variables explicatives.
Acquis
d'apprentissage
Au terme du cours, l'étudiant sera initié aux techniques de base de l'analyse des données discrètes ou catégories et sera capable de les appliquer sur des données réelles au moyen de logiciels de statistique.
Contenu Contenu - Distribution multinomiale (marginales, conditionnelles et propriétés asymptotiques). - Tables de contingence à deux critères : indépendance et homogénéité, mesures d'association et tests particuliers (Fisher, Mac Nemar,...). - Tables de contingence à plusieurs critères : indépendance mutuelle, partielle et conditionnelle. - Modèles log-linéaires. - Modèles conditionnels * Principes généraux * Modèle linéaire généralisé * Modèles probit et logit. - Analyse discriminante multinomiale, sélection de variables explicatives. Méthode Les exposés magistraux dont concentrés sur les 10 premières semaines du quadrimestre. Les quatre semaines suivantes sont consacrées à la réalisation, sans guidance, d'un travail d'application.
Autres infos Pré-requis Cours de base (niveau des candidatures) de Calcul des Probabilités et de Statistique. Evaluation Chaque étudiant reçoit un ensemble de données qu'il doit analyser au moyen de toutes les techniques vues au cours. Cette analyse fait l'objet d'un rapport que l'étudiant doit soumettre oralement devant les Professeurs. Durant la présentation de ce rapport, les Professeurs se réservent le droit d'interroger l'étudiant sur la matière vue au cours. Support La troisième référence sert de syllabus pour le cours. Certains compléments seront fournis aux étudiants. Encadrement Professeurs : P. Bogaert, M. Mouchart et J.M. Rolin Ouvrages de référence Bishop Y.M.M., Fienberg S.E. and P.W. Holland (1975) : Discrete Multivariate Analysis, Theory and Practice, M.I.T. Press, Cambridge, Mass. Dobson Annette (1990) : An Introduction to Generalized Linear Models, Chapman and Hall, London. Gérard G. and J.M. Rolin (1979) : Analyse des données discrètes, Recyclage en statistique, vol. 3, Université catholique de Louvain, Louvain-la-Neuve.
Cycle et année
d'étude
> Master [120] en statistiques, orientation générale
> Master [120] en statistiques, orientation biostatistique
> Master [120] en ingénieur de gestion
> Master [120] : ingénieur civil en mathématiques appliquées
> Certificat universitaire en statistique
> Master [120] en sciences économiques, orientation générale
Faculté ou entité
en charge
> LSBA


<<< Page précédente