Contribution du cours aux acquis d'apprentissage du programme de master en mathématique.
A la fin de cette activité, l'étudiant aura progressé dans sa capacité à:
- Connaître et comprendre un socle fondamental des mathématiques. Il aura notamment développé sa capacité à:
-- Reconnaître les concepts fondamentaux d'importantes théories mathématiques actuelles.
-- Etablir les liens principaux entre ces théories.
- Faire preuve d'abstraction, de raisonnement et d'esprit critique. Il aura notamment développé sa capacité à:
-- Dégager les aspects unificateurs de situations et expériences différentes.
-- Raisonner dans le cadre de la méthode axiomatique.
-- Construire et rédiger une démonstration de façon autonome, claire et rigoureuse.
Acquis d'apprentissage spécifiques au cours.
A la fin de cette activité, l'étudiant sera capable de:
- Construire des corps finis dont le nombre d'éléments est une puissance quelconque d'un nombre premier arbitraire, effectuer des opérations dans ces corps et en reconnaître la structure.
- Analyser des structures d'incidence, en particulier des espaces projectifs finis, et mettre en relation ces structures avec les carrés latins.
- Comprendre comment sont mises en oeuvre les structures découvertes dans le cadre d'une application d'ingénierie: les codes correcteurs d'erreurs.
- Etre capable de raisonner sur un code correcteur linéaire pour déduire ses propriétés fondamentales: longueur, dimension, capacité correctrice.
|