Cette activité consiste à introduire le langage de base et certains résultats fondamentaux de la théorie des noeuds pour étudier les interactions avec d'autres sujets, comme la topologie des 3-variétés, la physique et la biologie moléculaire. Les contenus suivants sont abordés dans le cadre du cours.
- Définitions et concepts de base. Définition de noeud, projections et diagrammes, les mouvements de Reidemeister, la 3-coloriage, le nombre d'enlacement.
- Le polynôme de Jones. Le crochet de Kauffman, le polynôme de Jones, le lien entre nombre de croisements d'un noeud alterné et le polynôme de Jones.
- Topologie des surfaces appliquée à la théorie des noeuds. la surface de Seifert, la classification des surfaces orientées a bord, la chirurgie sur les surfaces, le nombre d'enlacement comme nombre d'intersection avec la surface de Seifert.
-Le genre d'un noeud, l'additivité du genre et décomposition unique des noeuds en somme de noeuds premiers.
- Le polynôme d'Alexander. Matrices de présentations des modules, la matrice de Seifert et l'homologie du complément d'un entrelacs, le revêtement cyclique infinie d'un entrelacs,
le module d'Alexander, le polynôme d'Alexander et le genre.
- Le groupe fondamental et la topologie du complément d'un noeud. Le groupe fondamental et la présentation de Wirtinger, la p-coloriage via le groupe fondamental.
- Thèmes spéciaux (exemples:
-- des polynômes à 2 variables: les polynômes HOMFLY-PT et de Kauffman,
-- l'invariant de Witten lié au polynôme de Jones,
-- les noeuds et les 3-variétés,
-- les tresses, les enchevêtrements et l'algèbre de Temperley-Lieb,
-- l'homologie de Khovanov,
-- la théorie des noeuds appliquée à la biologie et à la chimie).
|