Contribution du cours aux acquis d'apprentissage du programme de bachelier en mathématique. A la fin de cette activité, l'étudiant aura progressé dans sa capacité à :
- Connaitre et comprendre un socle fondamental des mathématiques. Il aura notamment développé sa capacité à :
-- Choisir et utiliser des méthodes et des outils fondamentaux de calcul pour résoudre
des problèmes de mathématique.
-- Reconnaître les concepts fondamentaux de certains théories mathématiques actuelles.
-- Etablir les liens principaux entre ces théories, les expliquer et les motiver par des exemples.
- Dégager, grâce à l'approche abstraite et expérimentale propre aux sciences exactes, les aspects unificateurs de situations et expériences différentes en mathématique.
- Faire preuve d'abstraction et esprit critique. Il aura notamment développé sa capacité à :
-- Raisonner dans le cadre de la méthode axiomatique.
-- Reconnaître les arguments clef et la structure d'une démonstration.
-- Construire et rédiger une démonstration de façon autonome.
-- Apprécier la rigueur d'un raisonnement mathématique et en déceler les failles éventuelles.
Acquis d'apprentissage spécifiques au cours. A la fin de cette activité, l'étudiant sera capable de :
- Utiliser les espaces vectoriels de dimension finie pour décrire l'ensemble des solutions d'un système linéaire.
- Utiliser le théorème de représentation des applications linéaires pour interpréter les opérations sur les matrices, y compris le déterminant d'une matrice carrée.
- Exploiter les propriétés des applications linéaires, et notamment le théorème du rang, pour construire des espaces vectoriels et en estimer la dimension.
- Appliquer la notion d'espace euclidien et de projection orthogonale pour résoudre des problèmes de distance et d'approximation dans R^n et dans d'autres espaces.
- Appliquer les techniques de diagonalisation d'un opérateur linéaire pour étudier l'évolution d'un système linéaire et pour déterminer le caractère d'une forme quadratique.
|