<- Archives UCL - Programme d'études ->



Mathématiques 2 [ LFSAB1102 ]


9.0 crédits ECTS  45.0 h + 45.0 h   2q 

Enseignant(s) Keunings Roland ; Vitale Enrico (coordinateur) ; Glineur François ;
Langue
d'enseignement:
Français
Lieu de l'activité Louvain-la-Neuve
Ressources
en ligne

> https://icampus.uclouvain.be/claroline/course/index.php?cid=FSAB1102

Préalables

LFSAB1101

Thèmes abordés
  • Opérateurs linéaires ;
  • Espaces euclidiens et formes quadratiques ;
  • Équations différentielles linéaires ;
  • Continuité et différentiabilité pour les fonctions de plusieurs variables réelles ;
  • Problèmes d'optimisation ;
  • Analyse vectorielle et théorèmes intégraux.
Acquis
d'apprentissage

Eu égard au référentiel AA du programme « Bachelier en Sciences de l'Ingénieur, orientation ingénieur civil », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :

  • Connaissances en sciences fondamentales et polytechniques : AA1.1, AA1.2
  • Projet disciplinaire ou pluridisciplinaire : AA3.2
  • Communiquer efficacement oralement et par écrit : AA4.1

Plus précisément, au terme du cours, l'étudiant sera capable de :

  • Analyser et rédiger avec rigueur des énoncés et des démonstrations portants sur les contenus mathématiques précisés ci-dessous, et les illustrer par des exemples et des contre-exemples ;
  • Appliquer la notion d'espace euclidien et de projection orthogonale pour résoudre des problèmes de distance et d'approximation dans Rn et dans d'autres espaces ;
  • Appliquer les techniques de diagonalisation d'un opérateur linéaire pour étudier l'évolution d'un système linéaire et pour déterminer le caractère d'une forme quadratique ;
  • Appliquer la méthode de résolution d'une équation différentielle linéaire à coefficients constants d'ordre n ;
  • Exprimer des notions métriques dans Rn en utilisant le langage de la topologie. Visualiser les fonctions de R2 vers R ;
  • Étudier limites, continuité, dérivées directionnelles et différentiabilité pour les fonctions de plusieurs variables. Utiliser le polynôme de Taylor pour approcher une fonction ;
  • Localiser et identifier les extrema libres d'une fonction ; localiser les extrema sous contrainte d'une fonction à l'aide de la technique des multiplicateurs de Lagrange ;
  • Calculer des intégrales multiples en utilisant éventuellement un changement de variable ;
  • Calculer des intégrales de ligne, de surface, la circulation d'un champ de vecteurs le long d'une courbe et le flux d'un champ de vecteurs à travers une surface en utilisant éventuellement les théorèmes de type Stokes.
Modes d'évaluation
des acquis des étudiants

Les étudiants sont évalués individuellement et par écrit sur base des compétences particulières à acquérir annoncées ci-dessus.

Un test écrit de mi-quadrimestre permet d'ajouter à la note d'examen un bonus compris entre 0 et 2 points.

L'examen écrit porte sur la résolution d'exercices semblables à ceux proposés en APE et sur la compréhension de la théorie. Chaque examen est composé de quatre questions, dont une choisie parmi les anciennes questions d'examen disponibles sur le site iCampus. La mémorisation de démonstrations complexes n'est pas requise.

Méthodes d'enseignement

Le cours suit une alternance Cours Magistrale - Séance APE.

Les séances APE permettent de s'approprier des contenus présentés au cours et d'acquérir les techniques de calcul.

Quatre séances APP sont intégrées dans le dispositif, leur objectif est d'aider les étudiants à se questionner sur des problèmes qui seront abordés dans le cours, afin de les rendre plus réceptifs au moment du cours magistral et des séances APE.

À l'occasion des séances APE et APP l'apprentissage actif des étudiants est encouragé. Les trois activités se donnent en présentiel.

Contenu

Cette activité consiste à introduire des notions algébriques et des techniques de calcul différentiel, d'optimisation, de calcul intégral et d'analyse vectorielle qui ont un rôle important dans plusieurs cours du bachelier et du master en sciences de l'ingénieur.

Les contenus suivants sont abordés dans le cadre du cours :

  • Espaces euclidiens, projection orthogonale, problèmes d'approximation ;
  • Opérateurs linéaires, espaces propres et diagonalisation ;
  • Opérateur adjoint, théorème spectral, formes quadratiques, loi d'inertie ;
  • Problème de Cauchy pour les équations différentielles linéaires à coefficients constants ;
  • Fermés, ouverts, compacts, adhérence et frontière dans Rn ;
  • Limites, continuité et prolongement continu pour les fonctions de plusieurs variables ;
  • Dérivées directionnelles, différentiabilité, plan tangent et matrice Jacobienne ;
  • Dérivées partielles d'ordre supérieur et polynôme de Taylor ;
  • Extrema libres et extrema sous contrainte, multiplicateurs de Lagrange ;
  • Intégrales multiples et changements de variables ;
  • Intégrales de ligne et de surface, circulation et flux d'un champs de vecteurs ;
  • Notion de bord et théorèmes de type Stokes.
Bibliographie

Supports sur le site de cours :

  • Syllabus d'algèbre linéaire et équations différentielles ;
  • Transparents pour le calcul différentiel, l'optimisation, le calcul intégral et l'analyse vectorielle ;
  • Exercices corrigés des APPet APE et questions d'examen corrigées.

Livres de références :

  • R. Adams and C. Essex : Calculus, a complete course (Pearson, eighth ed.)
Cycle et année
d'étude
> Bachelier en sciences de l'ingénieur, orientation ingénieur civil architecte
> Bachelier en sciences de l'ingénieur, orientation ingénieur civil
Faculté ou entité
en charge
> BTCI


<<< Page précédente