<- Archives UCL - Programme d'études ->



Machine Learning : regression, dimensionality reduction and data visualization [ LELEC2870 ]


5.0 crédits ECTS  30.0 h + 30.0 h   1q 

Enseignant(s) Verleysen Michel ; Lee John (supplée Verleysen Michel) ;
Langue
d'enseignement:
Anglais
Lieu de l'activité Louvain-la-Neuve
Ressources
en ligne

> https://moodleucl.uclouvain.be/course/view.php?id=84

Préalables

/

Thèmes abordés

Méthodes d'analyse de données linéaires et non-linéaires, en particulier à des fins de régression et de réduction de dimension, y compris pour la visualisation.

Acquis
d'apprentissage

Eu égard au référentiel AA du programme « Master ingénieur civil biomédical », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :

- AA1.1, AA1.2, AA1.3, - AA3.1, AA3.2, AA3.3, - AA4.1, AA4.2, AA4.4

- AA5.1, AA5.2, AA5.3, AA5.5, - AA6.3


Plus précisément, au terme du cours, l'étudiant sera capable de :

- Comprendre et appliquer des techniques d'apprentissage automatique (machine learning) pour l'analyse de données et de signaux, en particulier pour des problèmes de régression et de prédiction.

- Comprendre et appliquer des techniques linéaires et non linéaires de visualisation de données.

- Evaluer les performances de ces méthodes par des techniques appropriées.

- Guider les choix à effectuer parmi les méthodes existantes sur base de la nature des données et des signaux à analyser

Modes d'évaluation
des acquis des étudiants

Examen oral (si le nombre d'inscrits le permet) à livre fermé.

Méthodes d'enseignement

Cours en auditoire, exercices, travaux pratiques sur ordinateur, projet individuel ou en binôme

Contenu
  • Régression linéaire
  • Régression non-linéaire avec perceptrons multi-couches
  • Clustering et quantification vectorielle
  • Régression non-linéaire avec réseaux à fonctions radiales de base
  • Régression probabiliste
  • Modèles ensemblistes
  • Sélection de modèles
  • Analyse en Composantes Principales
  • Réduction non-linéaire de dimension et visualisation de données
  • Analyse en Composantes Indépendantes
  • Méthodes à noyaux
Bibliographie

Divers livres de références (mais non obligatoires) mentionnés sur le site du cours

Cycle et année
d'étude
> Master [120] en statistiques, orientation générale
> Master [120] bioingénieur : sciences agronomiques
> Master [120] bioingénieur : sciences et technologies de l'environnement
> Master [120] bioingénieur : gestion des forêts et des espaces naturels
> Master [120] bioingénieur : chimie et bio-industries
> Master [120] en sciences informatiques
> Master [120] : ingénieur civil en informatique
> Master [120] : ingénieur civil biomédical
> Master [120] : ingénieur civil en mathématiques appliquées
> Master [120] : ingénieur civil électromécanicien
> Certificat universitaire en statistique
> Master [120] : ingénieur civil électricien
Faculté ou entité
en charge
> ELEC


<<< Page précédente