

LINMA2491

Operational Research

5.0 credits

2013-2014

30.0 h + 22.5 h

2q

Teacher(s) :	Papavasiliou Anthony ;
Language :	Anglais
Place of the course	Louvain-la-Neuve
Inline resources:	> http://icampus.uclouvain.be/claroline/course/index.php?cid=LINMA2491
Prerequisites :	LINMA1702 (Optimisation methods and models I)
Main themes :	 Mathematical background (duality, KKT optimality conditions, monotone operators) Mathematical programming models and languages
Aims :	In reference to the AA standard, this course contributes to the development, acquisition and evaluation of the following learning outcomes:
	 AA1.1, AA1.2, AA1.3 AA2.2, AA2.5 More specifically, at the end of the course students will be able to:
	Implement decomposition algorithms for solving large-scale optimization problems in two mathematical programming languages: AMPL and/or Mosel
	Identify and implement the most appropriate solution algorithms for specific classes of optimization problems under uncertainty that arise in finance, energy and logistics The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".
Evaluation methods :	 Written or oral exam, depending on the size of the class
Teaching methods :	2 hours of magistral courses per week, and 2 hours of training sections per week. Homeworks and term projects will be evaluated by the instructor and/or the teaching assistant.
Content :	 Stochastic programming models Value of perfect information and the value of the stochastic solution
	 The L-shaped method in two and multiple stages
	Multi-cut L-shaped algorithm
	Stochastic dual dynamic programming Scenario selection and importance sampling
	 Lagrangian relaxation
	 Stochastic integer programming

Université Catholique de Louvain - COURSES DESCRIPTION FOR 2013-2014 - LINMA2491

	 Monotone operators, proximal point algorithms and progressive hedging
Bibliography :	 Course notes
	Printouts from textbooks or archived journals will be provided during lectures. The following textbook will be followed closely for most of the course: John Birge, Francois Louveaux, "Introduction to Stochastic Programming"
Cycle and year of study :	Master [120] in Mathematical Engineering
Faculty or entity in charge:	MAP