Université catholique de Louvain

2012-2013

## Discrete stochastic models

| 5.0 credits | $30.0 \mathrm{~h}+22.5 \mathrm{~h}$ | 2 q |
| :---: | :---: | :---: |


| Teacher(s) : | Chevalier Philippe ; |
| :--- | :--- |
| Language : | Français |
| Place of the course | Louvain-la-Neuve |
| Main themes : | Introduction to stochastic models in operations research. Study of renewal processes, Markov chains, Markov Processes, Markov <br> Decision Processes. Applications to inventory models, queuing models, branching processes, random walks, etc. |
| Aims : | Introduction to stochastic processes used for modeling random systems and their most common applications. In particular we study <br> methods to compute the operating characteristics of such processes. |
| The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) <br> can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit". |  |
| Content : | - Introduction to stochastic processes with a discrete state-space <br> - Discrete time Markov chains with finite and infinite state-space <br> - Continuous time Markov processes (and semi-Markov processes) <br> - Renewal processes and stopping rules <br> - Poisson processes, birth and death processes <br> - Queuing theory and queuing networks <br> - Various applications such as inventory models, maintenance models, reliability, job-shops, |
| Other infos : | no special information |
| Cycle and year of <br> study : <br> Faculty or entity in <br> charge: | MAP <br> $>$ Master [120] in Electrical Engineering <br> $>$ Master [120] in Computer Science and Engineering <br> $>$ Master [120] in Computer Science <br> $>$ Master [120] in Mathematical Engineering <br> $>$ Master [120] in Statistics: General |

