Université catholique de Louvain

Design of micro and nanosystems

5.0 credits

LELEC2895

2012-2013

30.0 h + 30.0 h

h |

1q

Teacher(s) :	Francis Laurent ; Pardoen Thomas ; Raskin Jean-Pierre ; Flandre Denis ;
Language :	Anglais
Place of the course	Louvain-la-Neuve
Main themes :	See "main themes"
Aims :	At the end of the course the students will be able to: . design MEMS including the sensor, transducer as well as associated electronics, . use of unumerical and analytical multi-physics simulation tools for designing and optimizing the microsystem performance, . take into account the packaging and test issues at early stage of the MEMS design <i>The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s)</i> <i>can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit"</i> .
Content :	 Approach to MEMS design Transduction principles Sensors and actuators : electrical, mechanical, thermal, optical, (bio)chemical, etc. Co-integration MEMS-CMOS electronics Low-power low-noise read-out electronics Interconnection (electrical as well as fluidic) and packaging Multi-physics simulation tools and characterization Reliability issues
Other infos :	Teaching methods: About 8 classroom lectures will be given for providing the theroretical background. Afterwards the students will make a project in groups of 2-3 students depending on the chosen subjects related to the design of MEMS or NEMS. Prerequisites: Basic knowledges in electronics, solid-state physics, material science and chemistry as well as micro and nanofabrication
Cycle and year of study :	 Master [120] in Electrical Engineering Master [120] in Electro-mechanical Engineering Master [120] in Physical Engineering Master [120] in Chemical and Materials Engineering
Faculty or entity in charge:	ELEC