Préalables |
Ce cours suppose acquises les notions de base en traitement du signal, telles que dispensées dans le cours « signaux et système » ou « traitement numérique du signal ». Il a pour objectif principal d'introduire les notions indispensables pour appréhender des signaux d'images, depuis la capture jusqu'à son exploitation, en passant par les questions de représentation et d'approximation posées lors de sa transmission ou de son interprétation.
|
Modes d'évaluation des acquis des étudiants |
L'évaluation comprend trois composantes :
' Un examen oral : Celui-ci, réalisé en janvier, évalue les étudiants individuellement sur leur compréhension des concepts et des méthodes présentées lors des cours magistraux.
' Un projet réalisé par équipe de deux à trois étudiants : L'objectif est de résoudre un problème concret de vision intelligente ou de traitement d'image. Chaque groupe réalise tout d'abord une présentation succincte (non-cotée) d'avancement en milieu de quadrimestre;
l'objectif étant de guider les étudiants dans leur approche et leur méthodologie. La note finale du projet porte sur un rapport écrit et une présentation orale à réaliser en décembre.
' Une analyse critique de 3 articles scientifiques du domaine : Ceci permet à l'étudiant de démontrer son aptitude à cerner les atouts et les faiblesses d'une communication scientifique, tant en terme d'organisation que de contenu. Chaque étudiant remet un rapport d'analyse d'articles (1 page par article) en décembre.
Ces trois composantes sont respectivement pondérées à 40%, 40% et 20% et l'évaluation globale a donc lieu essentiellement hors session (fin décembre et janvier).
|
Contenu |
In particular, the course develops the following concepts :
' Spatial, temporal and colored image representations;
' Representation, approximation and transmission of images ;
' Linear and non-linear filtering operations ;
' Feature detection (contours, active points) ;
' Segmentation and semantic interpretation ;
' The sparsity principle in image processing ;
' Inverse problems and image restorations (denoising, debluring, inpainting) ;
' Compressed Sensing ;
' Image and Video Database Processing (detection, classification) ;
' Co-registration and biomedical applications ;
' Objects detection and tracking in videos ;
' Signal and image compression (JPEG, MPEG, ...).
Les compétences acquises doivent permettre aux étudiants de fournir une solution à des problèmes complexes impliquant le traitement des images, comme le contrôle de qualité, la vidéo-surveillance, le suivi automatique de cibles dans des vidéos, ainsi que la restauration et la compression des images.
|