Data mining & decision making [ LSINF2275 ]
5.0 crédits ECTS
30.0 h + 30.0 h
2q
Teacher(s) |
Saerens Marco ;
|
Language |
English
|
Place of the course |
Louvain-la-Neuve
|
Prerequisites |
- A first course on probability theory
- A first course on mathematical statistics
- An undergraduate course on matrix algebra
- An undergraduate course on multivariate analysis
|
Main themes |
The course is structured around four themes
- Complements of data mining,
- Decision making,
- Information retrieval,
- Link analysis and web/graph mining .
|
Aims |
- to understand quantitative and qualitative data mining methods and to apply them to decision making
- to develop a critical view of data mining techniques in specific application domains
- to master information retrieval techniques from very large data collection, possibly enriched with link structures (WEB, social networks, ...)
- to apply information retrieval techniques in the context of search engines and automated recommendation systems
- to implement data mining and information retrieval algorithms within standard software environments such as S-Plus, R, SAS, Weka or Matlab
|
Content |
Complements of data mining
- Canonical correlation analysis
- Correspondence analysis
- Partial least squares regression
- Log-linear models
- Association rules
Decision making
- Markov decision processes and reinforcement learning
- Exploration/exploitation and bandit problems
- Utility theory
- Multi-criteria preference modeling - the Promethee method
- Probabilistic reasoning with bayesian networks
- Possibility theory
- Two-players game theory
- Collective decisions
Information retrieval
- The basic vector-space model
- The probabilistic model
- Ranking web pages :PageRank, HITS, etc.
- Collaborative recommendation models (recommender systems) .
Link analysis and web/graph mining
- Network community detection
- Similarity measures between nodes
- Spectral graph partitioning and mapping
- Reputation models
|
Bibliography |
- Alpaydin (2004), "Introduction to machine learning". MIT Press.
- Bardos (2001), "Analyse discriminante. Application au risque et scoring financier. Dunod.
- Bishop (1995), "Neural networks for pattern recognition". Clarendon Press.
- Bishop (2006), "Pattern recognition and machine learning". Springer-Verlag.
- Bouroche & Saporta (1983), "L'analyse des données". Que Sais-je.
- Cornuéjols & Miclet (2002), "Apprentissage artificiel. Concepts et algorithmes". Eyrolles.
- Duda, Hart & Stork (2001), "Pattern classification, 2nd ed". John Wiley & Sons.
- Dunham (2003), "Data mining. Introductory and advanced topics". Prentice-Hall.
- Greenacre (1984), "Theory and applications of correspondence analysis". Academic Press.
- Han & Kamber (2005), "Data mining: Concepts and techniques, 2nd ed.". Morgan Kaufmann.
- Hand (1981), "Discrimination and classification". John Wiley & Sons.
- Hardle & Simar (2003), "Applied multivariate statistical analysis". Springer-Verlag. Disponible à http://www.quantlet.com/mdstat/scripts/mva/htmlbook/mvahtml.html
- Hastie, Tibshirani & Friedman (2001), "The elements of statistical learning". Springer-Verlag.
- Johnson & Wichern (2002), "Applied multivariate statistical analysis, 5th ed". Prentice-Hall.
- Lebart, Morineau & Piron (1995), "Statistique exploratoire multidimensionnelle". Dunod.
- Mitchell (1997), "Machine learning". McGraw-Hill.
- Naim, Wuillemin, Leray, Pourret & Becker (2004), "Réseaux bayesiens". Editions Eyrolles.
- Nilsson (1998), "Artificial intelligence: A new synthesis". Morgan Kaufmann.
- Ripley (1996), "Pattern recognition and neural networks". Cambridge University Press.
- Rosner (1995), "Fundamentals of biostatistics, 4th ed".Wadsworth Publishing Company.
- Saporta (1990), "Probabilités, analyse des données et statistique". Editions Technip.
- Tan, Steinbach & Kumer (2005), "Introduction to data mining". Pearson.
- Theodoridis & Koutroumbas (2003), "Pattern recognition, 3th ed". Academic Press.
- Therrien (1989), "Decision, estimation and classification". Wiley & Sons.
- Venables & Ripley (2002), "Modern applied statistics with S. Springer-Verlag.
- Webb (2002), "Statistical pattern recognition, 2nd ed". John Wiley and Sons.
|
Cycle et année d'étude |
> Master [120] in Computer Science
> Master [120] in Computer Science and Engineering
> Master [120] in Statistics: General
> Certificat universitaire en statistique
> Master 120 of arts in Business engineering
|
Faculty or entity in charge |
> INFO
|
<<< Page précédente
|