Category theory II [ LMAT2220 ]
6.0 crédits ECTS
45.0 h
2q
Teacher(s) |
Gran Marino ;
Vitale Enrico ;
|
Language |
French
|
Place of the course |
Louvain-la-Neuve
|
Prerequisites |
LMAT 2150 Category Theory
|
Main themes |
1) Topos theory : Grothendieck topos, Lawvere topos, localizations.
2) Categorical model theory : accessible categories, locally presentable and locally finitely presentable categories, algebraic categories.
3) Monads, comonads and their applications.
4) Protomodular, homological and semi-abelian categories.
5) Categorical Galois theory
6) Higher order categorical algebra
|
Aims |
The aim of this course is a thorough study of some, classical or more recent subjects in category theory. Applications to algebra, algebraic geometry, algebraic topology and universal algebra are also discussed.
|
Bibliography |
J. Adámek, J. Rosicky, E.M. Vitale : Algebraic theories, Cambridge University Press 2011. - F. Borceux : Handbook of categorical algebra, Cambridge University Press 1994. - F. Borceux, D. Bourn : Malcev, protomodular and semiabelian categories, Kluwer, 2004. - F. Borceux, G. Janelidze : Galois theories, Cambridge University Press 2001. - S. Mac Lane : Categories for the working mathematician, Springer-Verlag 1972.- S. Mac Lane : Homology, Springer-Verlag 1975.- S. Mac Lane, I. Moerdijk : Sheaves in geometry and logic, Springer-Verlag 1992.
|
Cycle et année d'étude |
> Master [120] in Mathematics
|
Faculty or entity in charge |
> MATH
|
<<< Page précédente
|