<- Archives UCL - Programme d'études ->



Probabilités [ LINGE1113 ]


4.0 crédits ECTS  30.0 h + 15.0 h   2q 

Enseignant(s) Segers Johan ;
Langue
d'enseignement:
Français
Lieu de l'activité Louvain-la-Neuve
Thèmes abordés Le cours couvre les aspects classiques de la théorie des probabilités mais place les concepts abordés dans la perspective de son utilisation dans l'analyse statistique. Le modèle de probabilité y est décrit ainsi que les pro-priétés de base des probabilités. Puis on considère des expériences où la caractéristique d'intérêt peut être modé-lisée par une variable aléatoire (discrète, continue, uni- et multivariée). L'analyse des fonctions de variables aléatoires est présentée et motivée par ses implications dans l'analyse des distributions d'échantillonnage de sta-tistiques. On y montre l'importance du théorème central-limite.
Acquis
d'apprentissage
Introduire au mode de raisonnement probabiliste et aux méthodes de l'analyse statistique. Ces méthodes sont utiles dans tous les domaines des sciences où des aspects aléatoires et/ou expérimentaux apparaissent (sciences humaines, techniques, médicales ou naturelles). Le cours développera surtout les outils utiles pour les sciences du management et les sciences économiques et de gestion. A l'issue du cours l'étudiant devra être capable de comprendre et modéliser les aspects aléatoires de certaines expériences simples et y calculer les probabilités des événements d'intérêt. Il devra également être capable d'appliquer ces modèles à des situations réelles plus complexes et décrire ces phénomènes par le biais de varia-bles aléatoires appropriées (uni- et multivariées). Il verra aussi comment on peut étudier les propriétés de fonc-tions de variables aléatoires et comment ces concepts s'appliquent naturellement au cadre de l'analyse statistique (échantillonnage).
Contenu Introduction à la statistique, Le modèle probabiliste, Variables aléatoires discrètes, Variables aléatoires continues, Variables multivariées, Fonctions de variables aléatoires, Echantillonnage et théorème central-limite, Approximation d'une binomiale par une normale Le cours est donné sous forme : - d'exposés magistraux (l'enseignant introduit les concepts à partir d'une application et dégage leur forme abstraite), - de séances d'exercices (l'enseignant y soumet des applications/problèmes aux étudiants et propose une démarche de résolution) complétées par une participation active des étudiants sous forme de lectures, résolution autonome de problèmes,…
Autres infos Support : Référence : (à titre d'exemple) Wackerly, D., Mendenhall, W. and R. Scheaffer (2002), Mathematical Statistics with Applications, Duxbury Press, New York, 6th edition. (Chapitre 1 à 7)
Cycle et année
d'étude
> Année d'études préparatoire au master en sciences actuarielles
> Bachelier en information et communication
> Bachelier en philosophie
> Bachelier en sciences de l'ingénieur, orientation ingénieur civil architecte
> Bachelier en sciences informatiques
> Bachelier en sciences psychologiques et de l'éducation, orientation générale
> Bachelier en sciences économiques et de gestion
> Bachelier en sciences humaines et sociales
> Bachelier en sciences de la motricité, orientation générale
> Bachelier en sociologie et anthropologie
> Bachelier en sciences politiques, orientation générale
> Bachelier en sciences mathématiques
> Bachelier en sciences biomédicales
> Bachelier en sciences de l'ingénieur, orientation ingénieur civil
> Bachelier en sciences pharmaceutiques
> Bachelier en sciences religieuses
> Année d'études préparatoire au master en statistiques, orientation générale
> Bachelier en ingénieur de gestion
Faculté ou entité
en charge
> ESPO


<<< Page précédente