Category theory II [ LMAT2220 ]
6.0 crédits ECTS
45.0 h
2q
Teacher(s) |
Vitale Enrico ;
|
Language |
French
|
Place of the course |
Louvain-la-Neuve
|
Main themes |
1) Topos theory : Grothendieck topos, Lawvere topos, localizations.2) Categorical model theory : accessible categories, locally presentable and locally finitely presentable categories, algebraic categories.3) Monads, comonads and their applications.4) Protomodular, homological and semi-abelian categories.5) Higher order categorical algebra.
|
Aims |
The aim of this course is a thorough study of some, classical or more recent chapters in category theory. Applications to algebra, algebraic geometry, algebraic topology and universal algebra are also discussed.
|
Other information |
Pré-requis MATH 2391 Théorie des catégories.
Evaluation Modalités à discuter entre étudiants et titulaires.
Support - F. Borceux : handbook of categorical algebra, Cambridge University Press 1994.- F. Borceux, D. Bourn : Malcev, protomodular and semiabelian categories, Kluwer, 2004.- Ch. Kassel : Quantum Groups, Springer-Verlag 1975.- S. Mac Lane : Categories for the working mathematician, Springer-Verlag 1972.- S. Mac Lane : Homology, Springer-Verlag 1975.- S. Mac Lane, I. Moerdijk : Sheaves in geometry and logic, Springer-Verlag 1992.
|
Cycle et année d'étude |
> Master [120] in Mathematics
|
Faculty or entity in charge |
> MATH
|
<<< Page précédente
|