

LAUCE2181

2010-2011

Mécanique des structures : problèmes hyperstatiques

2.0 crédits 10.0 h + 15.0 h 1q

Enseignants:	Remacle Jean-François ;
Langue d'enseignement:	Français
Lieu du cours	Louvain-la-Neuve
Thèmes abordés :	- Présentation des diverses classes de structures et de leur modélisation dans le cadre de l'élasticité linéaire
	- Application de la méthode des éléments finis à l'analyse statique des structures (y compris les problèmes de stabilité élastique) - Familiarisation à l'utilisation de logiciels de calcul
Acquis d'apprentissage	Donner aux étudiants les principes de la modélisation des structures (élasticité linéaire et analyse statique) La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d'enseignement (UE) ».
Contenu :	- Fonction structurale et classes de structures * présentation des principes de base (physique de la fonction structurale) et identification des différentes classes de structures (au vu de leur mode de fonctionnement)
	- Modélisation des structures élastiques * dérivation des modèles continus de base pour diverses classes de problèmes élasto-statiques (hypothèses de base, équations constitutives, champs de déformations, de déplacements et de contraintes). Développement de solutions de référence * structures à barres et à poutres (modèles de Bernoulli-Euler et de Ti-moshenko) * câbles * milieux continus 2-D (états plans de contrainte et de déformation) * plaques minces et épaisses (modèles de Kirchhoff et de Reissner-Mindlin) * coques minces et épaisses * milieux continus 3-D
	 Application de la méthode des éléments finis à l'analyse des structures. Présentation de l'application de la méthode des éléments finis aux diverses classes de structures ci-dessus. * formulation variationnelle (forme faible et aspects énergétiques) * méthode de Galerkin (discrétisation, approche de type 'déplacement') * mise en oeuvre numérique : traitement de problèmes élasto-statiques avec des conditions aux limites variées (de type mécanique, cinématique, thermique, etc.) , évaluation de la stabilité élastique (flambement)
	- Utilisation de logiciels de calcul * principes * fonctionnalités * pré- et post-traitements * validation et vérification * applications
Autres infos :	Dans ce cours, on peut être interrogé 2 fois. Dans ce cours, on a accès à un livre de référence en anglais et le prof est d'accord de communiquer en anglais. Des devoirs obligatoires (homeworks) sont prévus.
Cycle et année d'étude: :	➤ Master [120] : ingénieur civil en chimie et science des matériaux ➤ Master [120] : ingénieur civil mécanicien ➤ Master [120] : ingénieur civil architecte ➤ Master [120] : ingénieur civil électromécanicien ➤ Master [120] : ingénieur civil des constructions
Faculté ou entité en charge:	GC