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Design of continuous-time flows on intertwined orbit spaces

P.-A. Absil C. Lageman J. H. Manton

Abstract— Consider a spaceM endowed with two or more  often advantageous to first produce a continuous-time algo-
Lie group actions. Under a certain condition on the orbits of  rithm, then attempt to discretize it correctly. Continudine
the Lie group actions, we show how to construct a flow on  gystems are also of particular interest in tracking prolslem

M that projects to prescribed flows on the orbit spaces of the h bl t h fi | i
group actions. Hence, in order to design a flow that converges when problem parameters change continuously over time.

to the intersection of given orbits, it suffices to design flows on The task of the algorithm is here to follow a solutigit)

the various orbit spaces that display convergence to the desired of the problemP(¢) as time evolves.

orbits, and then to lift these flows to M/ using the proposed Several continuous-time dynamical systems on matrix
procedure. We illustrate the technique by creating a flow for spaces (also callethatrix flow§ have been proposed in

principal component analysis. The flow projects to a flow on the . . .
Grassmann manifold that achieves principal subspace analysis (€ literature that achieve PSA or even PCA; see [20],

and to a flow on the “shape” manifold that converges to the [10], [12], [29], [35], [27], [30] and the many references

set of orthonormal matrices. therein. Early analyses of PSA and PCA flows have focused
on local stability issues without addressing the problem of
. INTRODUCTION global convergence in a mathematically satisfactory way. A

breakthrough came with the analysis by Yoshizaal. [40]

Given a symmetric positive-definite x n matrix A, we
say that a flowgp on the setR™*P of all the n x p real )
matrices achieveprincipal subspace analysis (PSK) for Y = AYN - YNYTAY, Y € R™*P. (¢D)]
almost all initial conditionsX € R™*?, the column space of
the solutiong (¢, X') converges to the-dimensional invariant
subspace (oeigenspaceof A associated with the largest
eigenvalues. If moreover the columns of the solutjgn X)
converge to thep principal eigenvectors of, i.e., those

of the flow

This flow was studied by Brockett [9] in the case where
Y belongs to the set of orthonormal x n matrices; for
the choiceN = [ it yields the well-known Oja flow [33].
Assuming thatA is positive definite, Yoshizawat al. [40]

; i show that (1) is a gradient flow for a certain cost function
correspond!ng tq the largest elgenvalues., then the flow 5h R"*» endowed with a well-chosen Riemannian metric.
said to achieveprincipal component analysis (PCA) Using tojasiewicz’'s theorem [26], they show that all so-

There is a vast literature on continuous-time flows thalhtions of (1) converge to a single equilibrium point. A

achieve computational tasks, spanning several areas of Coa?fficulty with gradient-based approaches, however, is the
putational science. This includes, but is not limited togér

. absence of a systematic procedure to detect whether a flow

programming (7], [8], [9], [17], continuous nonlinéar opti .oy he expressed as a gradient flow and to determine the
mization [16], [24], discrete optimization [21], [22], [Bg5], corresponding cost function and metric.

signal processing [6], [14], [11], model reduction [20]913 |, 1] a constructive procedure was proposed that yields
and automatic contrql [201, [23], [19]. Appllcatlo.ns in éar a matrix flow with PSA and PCA properties. The key
algebra, and espe_C|aIIy in eigenvalue and singular Val”@oservation was that a flow on R"*P achieves PCA if
problems, are particularly abundant. Important advanoes Ly only if, for almost all initial pointsY,, the solution
the area have come from the work on |sospgctral floyvs in thp(t) .— (1, Yy) satisfies the following three conditions (we
e_arly 1980s [37], [_13], [31]. Interest for studyln_g contous-  .ocime that the eigenvalugs > Xy > --- > A, of A
time flows stems in part from _the works of L_Jung [25] a_ndsatisfy/\p > Ay41): (i) the column space of (¢) converges
Kush.ner and Clark [23] relayng th? behgwor of I.earnlnglo the dominant invariant subspace 4f (ii) Y (¢) converges
algorithms to the one of associated differential equaliees, 1, the set of orthonormal matrices or, equivalently stated,
e.g, Oja and Karhunen [34] for'an gppllcatlpn. As d'lscussqgmHoo YT(4)Y () = L; (iii) YT(t)AY (t) converges to the

in [2], another reason for considering continuous-time- SySsot of diagonal matrices with nonincreasing diagonal estri
tems is that it is easier to enforce certain qualitativets iy, 5 view to constructing a flow that satisfies these three

on continuous-time systems than on discrete-time SySte”b%nditions, it was shown in [1] that any dynamical system
In order to obtain a suitable discrete-time algorithm, ithiss Y = X(Y) on the seR™*” (p < n) of all the n x p real
- *

o ) _matrices with full column rank, can be decomposed as
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OMmn)Y = {UY : Y € O(n)}. Note thatYGL(p) is the or symmetry group G, of an =z € M is the subgroup
set of all the matrices that have the same column spagé as{g | ¥(¢9,z) = z}. Following [18], we say that the action is
andO(n)Y is the set of all the matrices that have the samprincipal if the isotropy groups of all: € M are conjugate,
“shape” asY. By carefully selectingX;(Y) and X»(Y), it i.e., for allz,y € M there is am € G with G, = h™'G,h.
was possible to obtain a flow that, for almost all initial pisin Free actions are principal as the isotropy groups equal the
converges to the set of matrices whose column space is tiwial group {e}. The orbit space(or quotient spacewith
dominant subspace of and whose shape is orthonormal.respect to the group operation is the quotient spacé/of
This achives conditions (i) and (ii) above. Finally, thenter with respect to the equivalence relation~ y < dg €
X5(Y) in Ty (YGL(p) N O(n)Y) was chosen to take care G: ¢(x,g) = y. A map f between manifolds\/, N with
of condition (iii). group actions of a Lie grouids is called equivariantif it

In this paper, we extend this constructive procedure toommutes with the group actions, i.g.f(z) = f(gx) for
the more general setting of several (shyproper, principal all z € M, g € G. In particular, a vector fieldX is called
Lie group actions on a manifold/. The condition that the equivariant if X (gz) = T, X (z) for all z € M.
Lie group actions be proper and principal ensures that the For a general Lie group action on a manifold, the
quotients of the manifold by the group actions are smootbrbit space need not be a manifold. In fact, it can be very
manifolds. This makes it possible to first address the task ebmplicated. For example, any complete, smooth dynamical
creating suitable vector field¥, ..., X, on thek quotient system can be viewed as a smooth actionRofon the
manifolds independently. The key issue is then to be able toderlying space. If we restrict ourselves to proper, ppac
build a vector fieldX on the manifoldM that “projects” to group actions, then the orbit space is a smooth manifold [15]
the vector fieldsX;, ..., Xi. We give a sufficient condition In this case, the manifold/ has the structure of a fiber
on the group actions for such a vector fieki to exist bundle over the orbit space. The fiber through a poirt M
regardless of(1, ..., X}. Under this sufficient condition, we is isomorphic to the homogeneous spacgG,. For free
provide a procedure to construgf from any given vector group actions, one even has a principal fiber bundle, i.e.,
fields X1,..., X on the quotient manifolds. a neighborhood of a fiber is equivariant diffeomorphic to

Note that the obtained vector field is in general not the productG x U, for an open setU C M/G. For
invariant by the Lie group actions. An invariance conditiorprincipal actions, fibers have a neighborhood equivayantl
would be too restrictive. Instead, we use the more generdiffeomorphic toG/G, x U [15]. In the remainder of this
concept of partial symmetries from Nijmeijer and van depaper, we will only consider proper, principal group acton
Schatft [32]. St.atmg that a group acyon Is a partial symm_etr [11. CONSTRUCTION OF VECTOR FIELDS WITH PARTIAL
for a vector field amounts to saying that the vector field
. : . . SYMMETRIES
induces a unique vector field on the quotient by the group
action. Assume that a manifold/ with proper and principal

The paper is organized as follows. After introducing no9roup actions of Lie groupsry, ..., Gy is given. We will
tation in Section II, we develop in Section Il a construatio present a construction method which derives a vector field on

procedure for vector fields with several partial symmetriesM from vector fieldsX, .. ., Xj. on the orbit spaces?/G;.
This procedure is illustrated on the PCA problem in Seclhe methods aims to lift the convergence properties from the
tion IV. Conclusions are drawn in Section V. vector fields on the orbit spaces to the new one on the main

manifold. For this purpose the constructed vector field will
Il. NOTATION have the partial symmetrieSy, ..., G and its projections

In this section, we introduce some terminology regardin§n the orbit spaces will coincide withy, ..., Xj.

manifolds and group actions on manifolds. We refer, e.g., Before introducing our construction method, we recall
to [15] for a detailed account. the notions of horizontal and vertical distributions of gpo

Let M, N be smooth manifolds and : M — N be actions as these are an essential tool for our approach. The

a smooth function. We IeT'M and TN denote the tangent Natural projectionz of A/ onto the orbit spacel//G is

bundles and’, M, T, N denote the tangent spaces at specifi@ Submersion and defines thertical distribution V' by

pointsz € M, y € N. The notationTf : TM — TN is V(z) = kerT,w. Note that the vertlc_al distribution consists

used for the tangent map gf andT,.f : T,M — Ty, N of th_e_ tangent spaces to th(_e orbits of the group action.

for the tangent map at a pointe M. For lifting curves and vector fields from the orbit space to
Let G be a Lie group. Araction of G on M is a smooth the manifold M, we need another distribution, feorizontal

mapping : G x M — M with ¥(g,¥(h,2)) = ¥(gh, z) distribution H, satisfying the following conditions
and(e,z) = z, e the identity of G. For shorter notation « H(z) ®V(z) =T, M and

we usually letgz stand fore (g, z) and <, for the map o TupgH(z) = H(gx) forall g € G, x € M (equivari-

x — (g, ). We call the actiorproperif the map(g, z) — ance).

(z,v(g,2)) is proper, i.e., preimages of compact sets ar&nlike the vertical distribution, the horizontal one is a#iy
compact. The action is calleftee if ¥ (g,2) = « for a not unique. Note that by the slice theorem [15] there is
x € M implies g = e. The orbit Gz of x € M is the always an equivariant Riemannian metiic on M, i.e.,
set{¢(g,z) | ¢ € G}. Theisotropy group(or stabilizer h(T4(x)v,T4(z)w) = h(v,w) for all g € G, z € M,



v,w € T, M. Hence, choosing the orthogonal complement of for integrable distributiond/, ..., V,, on M is a diffeo-
V' with respect toh gives us always a horizontal distribution morphismr : U — Ny x ... x Ng, U C M open, N;

on M. Given a vector fieldX on M and a horizontal manifolds such that

distribution H we can decompos& uniquely into ahor- .

izontal part X; € H and vertical part Xy € V with Ai = Njerw; ()

X = Xy + Xy. Furthermore, for a vector field on s an integral manifold oft; for all ¢; € N;, j € I(i) for

M/G, there exists a uniquieorizontal lif, depending on the gyjitable index set$ (). Following [36] we call the vertical
hAorizontaI distributionH,A to a \/Aector fleIdXH on M with distributions‘/’i Simu|taneous|y integrab]e'f for any r €

Xp(r) € H(z) andTn Xy = X. Unless stated otherwise, )/ we have a neighborhoo(z) with local coordinates

the vector fields we consider are always smooth. z1,...,x, such that the integral manifolds ofig have the
We now recall the definition of partial symmetries for aform

vector field X on M [32].

Definition 3.1: Let M be a manifold and> a principal, x = const [€I(i)
Proper group "?‘C“O”- The acti_on (6h) is apartial sym.metry for suitable index sets/(i) < {1,...,n} with dimV;
OT a vector field X on M if there exists a horizontal elements. Note that simultaneous integrability implies th
distribution & such that simultaneous integrability of sums of arbitrary intersecs

Xu(gr) = Tg(2) X u(x) of the distributions.
) For our construction method we will not require the si-
where X;; denotes the horizontal part of . multaneous integrability of the vertical distributionseitly.

Proposition 3.2: The action of(+ is a partial symmetry of |nstead we use a stronger transversality condition on the
X if and only if there exists a vector field on M /G such  horizontal distributions.

that the diagram Condition 3.5:Let Gy,...,G be groups acting on the
X manifold M with horizontal distributionsH,, ..., H;. We
M — TM . . "
will use the following condition:
wl Twl o (H) The horizontal distributiongi; are contained in the

% vertical distributions of the other actions, i.e.
M/G —— T(M/G)

commutesy : M — M/G the canonical projection. With this condition we propose the following construction
Proof: See [32]. method.
Remark 3.3:As a consequence of Proposition 3.2, we can  ~q .« ction 3.6:Let G1,...,G}, be groups with princi-

use the horizontalf_s;l)aa(ce to lift fahvecto_r Ifiekd on the orbit pal and proper group actions on the manifoll and with
space to a vector field” on M with partial symmetnG. In horizontal distributiongd,, . .., H;, satisfying (H). Then for

fact, ast, M i§ the dirgct sum of/ (z) = kerTym andH (x), arbitrary vector fieldsX1, ..., X, on the orbit spaces//G;
there is a unique preimag¥ (z) of X (r(z)) in H(z). BY 504 4 vector field” e NF_,V; we construct a vector fiel&
the Proposition this vector field has the partial symmeiry on M by =

H; CV; fori#j.

Recall that a vector field oM/ is completeif its integral k
curves are defined for all€ R. Likewise a flowg on M is X=Y+ ZXHN
called completeif it is defined for allt € R. i=1

Proposition 3.4:Let X be a complete vector field oh/
with partial symmetryG. Then the flow¢ of X induces a
complete flowg on M /G such that

where Xy, denotes the horizontal lift ok;.
The following proposition ensures that this construction
makes sense. Furthermore, the condition (H) is both neces-
7o ¢(z,t) = ¢(m(x),1t) sary and sufficient for our construction.
Proposition 3.7:Let G4, ..., G be groups with principal
forall z € M, t € R, # : M — M/G the canonical ang proper group actions on the manifold and with

projection. The flows is the flow of the induced vector field horizontal distributionsH, . . ., H,. Then the following are
on M /G from Proposition 3.2. equivalent
Proof: Immediate. | 1) (H) holds

By Remark 3.3 vector fields on the orbit spaces can
be lifted to vector fields on the main manifold by using
horizontal distributions for the group actions. Howeves, a

2) For arbitrary vector fields\y, ..., X} on the quotient
spacesM /G; the vector field

we want to construct a single vector field from vector fields k

on several different orbit spaces, we will need some addi- X = ZXH

tional compatibility conditions on the vertical and horital i=1

distributions. satisfiesTm; X = X; fori =1,...,k, m : M —
Let M be a manifold with principal and proper group M /@G, the canonical projectionsXy, the horizontal

actions of the groupé:y, . .., Gx. A local coordinate system lift of X;.



Under this condition the group actiors; are partial sym- that EB;:lHj C Viz1. ThusL; + Vi1 =TM. From
metries of X. Furthermore, ifY” is a vector field with

i

k
Vier =Viga N (Li & ) H;
YGﬂVi, +1 +1 ( ]G:? J)
1=1 ; ;
=(VipNL)o@H; =L o P H;

thenX +Y has partial symmetrie§’y, ..., Gy andTm; (X +
Y) = X,.

Proof: That (H) implies the condition oX follows andH,,, ® V;,1 = TM we get that
directly from the definition of the horizontal lift and the
vertical distributions. Assume that (H) does not hold. We i+l
can restrict ourselves to the case of two group acti@Gns Liy1® @Hj =TM.
Gy on M. W.l.o.g. Hy ¢ V5. Then there exists am € M J=1
andv € T,M, with v € Hi(z) \ Va(z), in particular . .
v # 0. Furthermore, there is a vector field; on M /G, with This proves our claim. ) . _-
X (m(z)) = Tymo. Its lift Xy, has the values at z. On Lemma 3.10:Let Gl,_...,Gk be groups with prlnc_lpal
M/ G- we choose the vector field, = 0 with lift X;, =0. &nd proper group actions on the ma}tgmfoM, satisfying
The projection ofX = Xy, + Xy, to M/G> at the point (H). We denote by the Q|stnbutlonmj:1Vj'. Then @ is
o (x) is # 0 askerT,my = V(). ThusT,m X (z) £ Xa(z) mtegrable;. Furthermore given local coordlna_t,esfor Q,
and (H) is equivalent to condition 2. The remaining claimdh® function u: & — (mi(z), ..., m(2), p(x)) is a local
follow directly from the definitions. m coordlna}te system for .thizf;-. In particular, the distributions

Remark 3.8:I1f we would construct a vector field with Vi are simultaneously integrable. .

symmetries, i.e., an equivariant one, instead of the one wit ~ Froof: ~ We denote by 4 the map z
partial symmetries, then the construction would be mucﬁrl(m)““7“79(”3))'551‘6?”1‘(5”) =Vi(z)fori=1,....k
more complicated. We would have to use compatibility’e have thakerT, i = M, V() = Q(z). By Lemma 3.9
conditions on theX; restricting our possible choices to a'Nn€ equation
large extent. Take for example the additive gr@ipperating
on R? by translationsg;, ¢ of the first and the second
coordinate. With partial symmetries we can choose arlyitrar
vector fields on the orbit spaces, here in both cd&es$o
construct a vector field oiR2. If we would require that the
constructed vector field is equivariant with respect/toand
1) then the only possible choice for vector fieldslknvould

be the constant ones. holds. This implies thatankZ,i = S* , dim(M/G,).

By construction, the sunX induces the given vector fields Thus /i is a submersion an@(z) is integrable. We consider
X; on the orbit spaces. We now consider the structut® af o\ the functiony given in the Lemma. At = (ji, p)

local coordinates. For this we need some technical lemmag,q kerT,ji = Q(z) we have thatkerZ,u = {0}. From

k
dim M = dimQ + » _ dim H;

i=1

k
=dimQ+ > _dim(M/G;) (2)

i=1

Lemma 3.9:Let Gy, ..., G be groups acting principal equation (2) if follows thatl,, M is an isomorphism. Thus
and proper group actions on the manifalf, satisfying (H). , must be a local diffeomorphism. Furthermore, the sets
We denote byQ the distributionn%_, V;. Then 7, (xi), ©; € M/G,; are the integral manifolds of the

distributions V;. Hence, . is a local coordinate system for
k the V;. |
T™ = Qo P Hj, Proposition 3.11:Let X be the vector field from Con-
j=1 struction 3.6. ThenX is decoupled with respect to the group

) o actions. That is, in suitable local coordinates, we have
where® denotes the direct sum of distributions.

Proof: Let L, = n’_,V; fori e {1,...,k}. We show fi(x1)
inductively that .

X = : :
i fr(@r)
T™ = L; & P H;. fer (@, Tpt)
j=1
’ where z;., are the coordinates orﬁlev;- and z;, i =
As L; = Vi we get from the definition of the vertical and 1, ...,k are the remaining coordinates given hy.
horizontal distributions thaf.; & H; = T M. Assume that Proof: This is a direct consequence of Proposition 3.7

the claim is shown foi € {1,...,k — 1}. By (H) we have and Lemma 3.10. ]



IV. CONSTRUCTION OF A NEWPCA FLOW induces the function above on the Grassmann manifold.
In [1], a PCA flow was obtained using an ad hod construd€nce, the results hold there, too.) The equilibria are the

tive approach. In this section, we revisit the results ofifi] P-dimensional eigenspaces of and the eigenspaces of
the context of the general theory developed in Section 111.the largest eigenvalues constitute an asymptoticallylestab

We consider two actions oR"*”: manifold. Furthermore, all other manifolds of equilibrieea

. the actionyy (M,Y) = Y'M of GL(p) by right multi- unstable. Lifting this vector field t®}*? gives us (see [4])
p"C&tiOﬂ - X, (Y) _ (I o Y(YTY)*lYT)AY (3)

« and the actionyy(U,Y) = UY of O(n) by left
multiplication. On the shape manifold we choose the vector field whose lift

The actions are both proper ang is free. The isotropy OnRi™”is
groups ofyy have the form

XLV)=YyYTy) "Y1, - YTY). (4)
Gy =Y{Y'Y)"'YT+Y.0(n—p)Y] . . o .

This vector field is hyperbolic with one asymptotically d&ab
with Y, an orthonormaln x (n — p) matrix, Y7Y, = 0.  equilibrium, the equivalence class of orthogonal mattices
Given an SVDOXQ = Y of Y, we see thatGy can be To see this, consider the functianon the shape manifold
written as induced by trace((I, — YTY)(I, — YTY)). One easily
0 )@T checks thato = —4v and v(t) is strictly decreasing.

Gy =0 (1
Yo 0 O(n—p) Furthermorev(m2(Y)) — oo for trace(YTY) — oo, mo

wherel, is thep x p identity matrix. Hences), is principal. the canonical projection on the orbit space of. Let

_ ; nXxp i
The quotient space of); is the Grassmann manifold Y leag(gl""’ap)@. be an SVD ofY” € R, W't.h
! . . 01 >...> 0, >0 anddiag(o1,...,0,) the n x p matrix
Grass(p,n) of p-dimensional subspaces &" as an orbit - . ) .
with o1, ..., 0, On the diagonal. A simple calculation shows

consists of alln x p matrices with the same span (see [3] forthat
details). For)y we call the quotient space tisbape manifold

as the orbits of, are given by matrices of the same shape, Xo(Y) = Qdiag(o; ' —1,...,0, ' —1)0. (5)
i.e., related by rotations. !
For the construction of a flow oR}*? we have to choose Denote byR? the set{z € R? | v = (z1,...,2p),2; #

the horizontal distributions such that the condition (Hjdso 0 fori = 1,...,p}. Using the over-parametrization/ =
The vertical distributions of the actions; and, are S0(n) xRE x SO(p) we can lift X, Iocallly aroundY to M
by setting X»(Q,01,...,0,,0) = (0,07 —1,...,0," —

Vi(Y)={YM | M € gl(p)}, 1,0). If o; < 1 then theo; values are locally increasing

where gl(p) = RP*? is the Lie algebra of x p matrices, along the integral curve oK through (Q,01,...,0,,0).
and As X, projects toX5, the integral curves oK, are mapped
on integral curves ofX,. Thus, if an singular value; is
VB(Y)={Qv |l = -q} smaller than 1 then it is locally increasing along the indégr
={Y.K+YYTY)'Q| K e R"PxP, curve of X,. Therefore, the singular values along an integral

0T = _ e rrr) curve can never converge tDoHe_nce, the integra_l curves are
: never moving into the set of singular x p matrices. Note
We choose as horizontal distributions that the singular values on an orbit f are constant. Thus,
B Terr o1 (n—p)xp by the properties ofr described above, all integral curves on
M) ={W|Y'W=0}={YIK|KeR } the orbit space of the), action are defined on the interval
and (0, 00). Therefore, a® = —4v, v converges exponentially to
Hy(Y) = {y(yTy)fls | ST — S} 0 on all integral curves. Hence, the orthogonal shape as the
) ) o _ ) single equilibrium is asymptotically stable with the whole
It is easily chepked that these distributions are indeed hornanifold R *? as region of attraction.
zontal and satisfy (H). As the intersection of the vertical distributiodg N V5
We choose now the flows on the Grassmann and shapenot trivial, we have third choice for the construction of

. : ; o o
manifold with a view to lifting them tdR:"". As our new o, new vector field. We use it to enforce PCA properties
flow should have PCA properties we choose a PSA flow ogf ihe flow, as the flow on the Grassmannian gives only

the Grassmanp manifold. Lgt be the_real—valueq functiqn PSA properties. The distributio; N V5 is the vertical

on Grass(p, n) induced by the generallzgd Rayle|gh quotienyjistribution of a third action ol™*?, the action)(U,Y) =

Y  trace((YTY)~'YTAY). The functionf is a Morse- Y(YTY)"2U(YTY)/2 of O(p). Hence, we have to
Bott function and the gradient ascent flow with respect to the,oothly choose vector fields on the orbits of this action
canonical Riemannian metric has PSA properties, see [29}, give us convergence of the integral curves to matrices of

(Note that the authors consider only the compact Stiefgligenvectors ofd. To achieve this we use the vector field
manifold, but the Grassmann manifold is just a quotient of

the compact Stiefel and the function on the Stiefel manifold X3(Y)=YYIy) ' [yT Ay, N], (6)



where[4,B] = AB — BA and N = diag(p,...,1). The
choice is justified by the following lemma.

Lemma 4.1:Let A € R™*™ be symmetric. Letl/ €
R?*P be a orthonormal matrix which spangalimensional
eigenspace ofl. Then the seV O(p) is invariant underX;

and, writingY = V@), we obtain the vector field
- . partial-symmetry construction procedure (Constructio8) 3
X3(Q) = QQTVAVQ, N] (") in the most general Lie group setting, and to illustrate it
on O(p). This is the gradient vector field of the Morse-ON & PCA flow. We \_Ni_II present elsgwhere new tools, based
Bott function —trace(Q? VT AVQN) and for the equilibria  O" normal hyperbolicity, for analyzing the convergence of
U the matrix VU consists only of eigenvectors of. The flows thus constructed. In particular, it possible to relas t
eigenvectors in the stable equilibria are sorted by deirgas @SSumption in Theorem 4.2 that the fifseigenvalues are
eigenvalues. simple.
Proof: This is a direct consequence of the behavior of
the double bracket flow, see e.g. [20, 2.1]. Note that for thell b_A Absil “Cont ime i ot faincipal
I . . [ . -A. Sli, ontinuous-time Tlows on quotient spaces principal
stability 20, 2.1] consider Onl).A W'_th distinct elgel_walues. component analysis,” iRroceedings of the 16th International Sympo-
In the general case an approximation argument gives that the sium on Mathematical Theory of Networks and Systems (MTNG20
equilibria with sorted eigenvectors as above are stable. Th . 2004"‘c i i ems that sol —

T FTTT] . _, ontinuous-time systems that solve computationa ms,
lack of Stablllty for _equmb”a with other orde_rs can be Bee_ 2007, international Journal of Unconventional Computirgappear.
be applying a rotation to two subsequent eigenvectors withs] p.-A. Absil, R. Mahony, and R. Sepulchre, “Riemannianmetry of
increasing eigenvalues. u Grassmann manifolds with a view on algorithmic computatigkcta

Using Construction 3.6 we get Appl. Math, vol. 80, no. 2, pp. 199-220, January 2004.
: [4]

——, Optimization Algorithms on Matrix Manifolds Princeton, NJ:
X(Y) =X (V) + Xo(Y) + X3(Y) (PCA) 5

permutation matrix. Only the matricégdiag(=+1,...,+1)
are stable equilibrium points of (8).

V. CONCLUSION AND FUTURE WORK
The main purpose of this paper has been to present the
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