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Abstract

This paper deals with a particular Tucker compression problem. For-
mally, given a higher-order tensor, we are interested in its best low multilin-
ear rank approximation. We study the local minima of the cost function that
measures the quality of putative low multilinear rank approximations. This
discussion is specific to higher-order tensors since, in the matrix case, the
low rank approximation problem has only one local, hence global, minimum.
Furthermore, in the higher-order tensor case, convergence to the solution
with lowest value of the cost function cannot be guaranteed with existing al-
gorithms even if they are initialized with the truncated higher-order singular
value decomposition.

We observed that the values of the cost function at different local minima
can be very close to each other. Thus, for memory savings based on Tucker
compression, the choice between these local minima does not really matter.
On the other hand, we found that the subspaces on which the original tensor
is projected can be very different. If the subspaces are of importance, different
local minima may yield very different results. We provide numerical examples
and indicate a relation between the number of local minima that are found
and the distribution of the higher-order singular values of the tensor.
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1. Introduction

This paper deals with the problem of Tucker compression. Mathemati-
cally, this problem can be formulated as the approximation of a higher-order
tensor by another tensor with bounded multilinear rank. This approxima-
tion can be used for dimensionality reduction [1, 2, 3, 4, 5, 6, 7, 8] and for
signal subspace estimation [9, 10, 11, 5, 6, 7, 8]. A classical application in
chemometrics is the compression of a third-order tensor, consisting of a set of
excitation-emission matrices, with the goal to reduce the computational load
of the fitting of a Parallel Factor model (PARAFAC) [6]. The problem is a
higher-order generalization of the computation of the best low rank approx-
imation of a matrix. The solution of the matrix problem follows from the
truncated singular value decomposition (SVD) [12]. The higher-order case is
by far more complex.

Original work concerning the tensor problem includes the decomposition
introduced by Tucker [13, 14] and the TUCKALS3 algorithm proposed in [15],
which was further analyzed in [16]. Other algorithms have recently been
proposed in [17, 18, 19, 20, 21, 22, 23], all having specific advantages and
disadvantages.

All algorithms in the literature look for a minimum of the cost function
but do not further analyze the obtained result. However, in the tensor prob-
lem there exist local optima. Although this is not a new result, to the best of
our knowledge it has never been examined in detail. In this paper, we discuss
the existence of local minima, investigate some of their properties and sug-
gest to use the algorithms with care. We believe that a number of potential
problems have been overlooked so far and that there is even a certain risk
that the blind application of algorithms may lead to false results.

This paper is organized as follows. In Section 2, the best low multilinear
rank approximation problem is formulated mathematically. In Section 3,
we provide numerical examples illustrating the existence of local minima.
We also discuss a relation between the number of obtained local minima,
the difficulty of the problem and the distribution of the higher-order singular
values of the given tensor. Some properties of the local minima are presented
in Section 4. In particular, we discuss the difference between local minima in
terms of the value of the cost function and in terms of the subspaces on which
the original tensor is projected. Section 5 treats the use of the truncated
higher-order singular value decomposition (HOSVD) as a starting value for
the algorithms with which the best low multilinear rank approximation is
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computed. We draw our conclusions in Section 6.

2. The best low multilinear rank approximation

The columns and rows of a matrix are generalized to mode-n vectors
(n = 1, 2, . . . , N) in the case of Nth-order tensors. A mode-n vector is
obtained by varying the nth index of the tensor, while keeping the other
indices fixed. The mode-n ranks of a higher-order tensor are generaliza-
tions of column and row rank of a matrix. The mode-n rank is defined
as the number of linearly independent mode-n vectors. If the mode-n rank
equals Rn, (n = 1, 2, . . . , N), the tensor is said to have multilinear rank equal
to (R1, R2, . . . , RN) [24, 25] and it is called a rank-(R1, R2, . . . , RN) tensor.
Approximating a tensor by another one with low multilinear rank is often
called Tucker compression. In this paper, we specifically consider the best
low multilinear rank approximation. For simplicity, we consider third-order
real-valued tensors.

In mathematical terms, the cost function that has to be minimized is
defined in the following way. Given a tensor A ∈ RI1×I2×I3, its best rank-
(R1, R2, R3) approximation Â ∈ RI1×I2×I3 minimizes the least-squares func-
tion f : RI1×I2×I3 → R,

f : Â 7→ ‖A − Â‖ 2 (1)

under the constraint that the mode-n rank of Â is bounded by Rn, n = 1, 2, 3,
where ‖ · ‖ stands for the Frobenius norm (‖ · ‖2 is equal to the sum of the
squares of all elements).

The mode-1 product A •1 M of a tensor A ∈ RI1×I2×I3 with a matrix
M ∈ RJ1×I1 is defined by

(A •1 M)j1i2i3 =
∑

i1

ai1i2i3m
(1)
j1i1
,

where 1 ≤ in ≤ In, 1 ≤ j1 ≤ J1 and ai1i2i3 is the element of A at position
(i1, i2, i3). In other words, the mode-1 vectors of A are multiplied by M. The
mode-2 and mode-3 products are defined in a similar way. It is often useful
to represent the elements of a tensor in a matrix form. One possible way to
do so is to put the mode-1, mode-2 or mode-3 vectors one after the other in a
specific order. We use the following definitions for the matrix representations
A(1),A(2) and A(3) of A :

(A(1))i1,(i2−1)I3+i3 = (A(2))i2,(i3−1)I1+i1 = (A(3))i3,(i1−1)I2+i2 = ai1i2i3 ,
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where 1 ≤ in ≤ In.
In practice, it is equivalent [16, 5, 15] and more convenient to maximize

the function

g :St(R1, I1)× St(R2, I2)× St(R3, I3)→ R,
(U,V,W) 7→ ‖A •1 UT •2 VT •3 WT‖ 2 = ‖UT A(1)(V⊗W)‖ 2

(2)

over the column-wise orthonormal matrices U,V and W. Here, St(Rn, In)
stands for the set of column-wise orthonormal (In × Rn)-matrices and ⊗
denotes the Kronecker product. It is sufficient to determine U,V and W in
order to compute Â in (1). The relation is given by

Â = A •1 UUT •2 VVT •3 WWT . (3)

In fact, as it can be seen from (3), only the column spaces of the matrices
U,V and W are of importance. The distinct matrix entries are irrelevant,
since multiplying any of the matrices from the right by an orthogonal matrix
would give the same result for Â. The column spaces of U,V and W are
computed using iterative algorithms [16, 17, 18, 19, 20, 21, 22]. The most
common algorithm is TUCKALS3 [15]. In [16] TUCKALS3 was interpreted
as a tensor generalization of the basic orthogonal iteration method, for the
computation of the best low rank approximation of a matrix, and variants
were discussed. Consequently, we will denote the algorithm as the higher-
order orthogonal iteration (HOOI).

A particular normalized version of the decomposition introduced by Tucker
in [13, 14] was interpreted in [26] as a striking tensor generalization of the
matrix SVD. Consequently we will denote this decomposition as the higher-
order singular value decomposition (HOSVD). It provides a good staring
value for the algorithms computing the best low multilinear rank approxi-
mation of tensors. HOSVD decomposes a third-order tensor A ∈ RI1×I2×I3
as

A = S •1 U(1) •2 U(2) •3 U(3) ,

where the matrices U(n) ∈ RIn×In, n = 1, 2, 3, are orthogonal and S ∈
RI1×I2×I3 is a third-order tensor with the following structure. Consider a
slicing of the tensor S along the first mode. It results in I1 matrices. The
inth matrix, 1 ≤ in ≤ In is obtained by fixing the first index of S to in and
varying the other two indices. Any two of the matrices are orthogonal to
each other and their norm is non-increasing when increasing in. The norms
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of the matrices are called the mode-1 singular values of A. Two more sets of
matrices with similar properties are obtained by slicing S along the other two
modes. The mode-n singular values n = 1, 2, 3 are also called higher-order
singular values of A.

3. Existence of local minima

Let us first consider tensors Ã ∈ R10×10×10,

Ã(σ) = T /‖T ‖+ σ ∗ E/‖E‖, (4)

where T ∈ R10×10×10 has multilinear rank equal to (2, 2, 2) and E ∈ R10×10×10

represents noise. Let T be obtained as

T = C •1 M(1) •2 M(2) •3 M(3), (5)

where the elements of C ∈ R2×2×2 are drawn from a normal distribution with
zero mean and unit standard deviation and the matrices M(n) ∈ R10×2, n =
1, 2, 3, are random column-wise orthonormal matrices, e.g., taken equal to the
Q factors of the thin QR factorization [12] of matrices with elements drawn
from normal distribution with zero mean and unit standard deviation. Let
the elements of E also be taken from a normal distribution with zero mean
and unit standard deviation. In order to standardize our results, we further
normalize Ã and work with

A = Ã/‖Ã‖ . (6)

The parameter σ controls the noise level. In this setup, it makes sense to
consider the rank-(2, 2, 2) approximation of A.

To study the convergence towards the global minimum, we examined the
set of local minima computed for a fixed A in 100 runs, starting from differ-
ent column-wise orthonormal initial matrices U0,V0, and W0. In order to
avoid conclusions that would only hold for one particular algorithm, we con-
sidered two different algorithms, HOOI [16] and the trust-region algorithm
[21, 17]. Both algorithms converge at least to local minima, except in very
special examples that are artificially constructed, where they might converge
to a saddle point. A run was stopped if the algorithm did not converge
(‖grad g(X)‖/g(X) < 10−9) in 200 iterations. We considered three noise
levels, σ = 0.2, 2, 4. The results are presented in Figure 1.
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[Figure 1 about here.]

In the first plot, Figure 1(a), the noise level is low and both algorithms
converged to the same minimum for all runs. After increasing the noise
level, both algorithms found the same two local minima (Figure 1(b)). In
Figure 1(c), σ = 4, there is more noise than structure and the algorithms
converged to several minima.

The values of the cost function f at the local minima also depend on the
noise level σ. This dependence is illustrated in Figure 2.

[Figure 2 about here.]

The top figure shows the distinct local minima for each σ. The bottom
figure shows the difference between the values of the cost function at the
local minima. Although some of the points seem to almost coincide, they
correspond to different local minima. The values of the three largest singular
values in each mode are given in Figure 3 for each σ.

[Figure 3 about here.]

For small σ, there is a large gap between the second and the third mode-n
singular values, n = 1, 2, 3. The problem is easy and few local minima appear
besides the global minimum. On the other hand, for large σ, the gaps are
small or nonexistent. In this case, when computing the best low multilinear
rank approximation, we are looking for a structure that is not really there.
The algorithms find many equally good, or equally bad, solutions. We can
conclude that the number of local minima found by the algorithms depends
on the difficulty of the problem. The latter is related to the distribution of
the higher-order singular values of A, which should be inspected.

We also performed simulations with tensors A ∈ R10×10×10 of which all
the entries were taken from a normal distribution with zero mean and unit
standard deviation. For each tensor, we considered 100 runs with arbitrary
initial column-wise orthonormal matrices U0,V0,W0 and we considered two
different low multilinear rank approximations: (R1, R2, R3) = (7, 8, 9) and
(R1, R2, R3) = (2, 2, 2). Both HOOI and the trust-region algorithm were
run until convergence (‖grad g(X)‖/g(X) < 10−9) or until a maximum of
200 iterations was reached. As in the previous example, for a fixed A both
algorithms globally yielded the same set of local minima. However, it was
often the case that when starting from the same initial matrices, HOOI and
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the trust-region algorithm converged to a different local minimum. The re-
sults from one representative example with a fixed tensor are presented in
Figure 4.

[Figure 4 about here.]

Figure 4(a) shows the results for the rank-(7, 8, 9) approximation. The num-
ber of obtained minima was smaller than in the case of rank-(2, 2, 2) approx-
imation (Figure 4(b)). The lowest “level” of points is expected to represent
the global minimum. However, there is no guarantee that this is the case.

The fact that there are several distinct subsets of converged points in
both Figure 1 and Figure 4 confirms that the differences are not caused by
numerical issues but that local minima really exist. Moreover, they are not
the exception but the general rule when there is no gap in the higher-order
singular value spectrum. This is a very important difference with matrices,
where the low-rank approximation problem does not have any local minima
except for the global minimum.

4. Properties of local minima

An interesting observation is that the actual values of the cost function at
the local minima found by the algorithms in the previous section were close
to each other. This can be seen in Figure 1 and Figure 4. Hence, in terms
of the cost function, the local minima are almost equivalent.

We also examined the column spaces of the matrices U, V and W in
different runs. We considered the subspace angles as defined in [12, §12.4.3].
Any two matrices U1 and U′1 that corresponded to two solutions with the
same value of the cost function spanned the same subspace. On the other
hand, the largest subspace angle between U1 and U2 corresponding to two
different local minima, appeared to be close to π/2, which means that the
subspaces were very different. (Note that a largest subspace angle close
to π/2 is the expected outcome for two subspaces drawn from the uniform
distribution when the dimension gets large [27].) These results also applied
to V and W. Hence, in terms of the subspaces used for the approximation,
the local minima are very different.

We further studied the second largest subspace angle. In general, for
two different minima, the second largest angle between the corresponding
subspaces was much smaller than the first one but it was not always (close
to) zero. Results from a simulation involving a tensor A ∈ R10×10×10 with

7



elements taken from a normal distribution with zero mean and unit standard
deviation are presented in Table 1 and Figure 5.

[Table 1 about here.]

[Figure 5 about here.]

The imposed multilinear rank was (2, 2, 2). Ten runs were performed with the
trust-region algorithm, starting from different random column-wise orthonor-
mal U0,V0 and W0. A run was stopped when ‖grad g(X)‖/g(X) < 10−9 [21].
Figure 5 presents the obtained distribution of the local minima. It can be
seen that the trust-region algorithm converged to the same local minimum in
runs 1, 8 and 10. In Table 1 we show the values of both subspace angles for all
possible combinations of two U matrices. The entries (1, 8), (1, 10), (8, 10)
of the tables are (numerical) zeros. This confirms that runs 1, 8 and 10 con-
verged to the same minimum. Another local minimum was found in runs
6, 7 and 9.

The fact that the values of the cost function at different local minima
can be close while the corresponding subspaces are different, has important
consequences for certain applications. If the best low multilinear rank ap-
proximation is merely used as a compression tool, aiming at a reduction of the
memory needed to store the tensor, taking any of these local minima results
in a similar compression rate as taking the global minimum itself. In this
type of applications, the existence of the local minima does not pose a major
problem. On the other hand, in applications where the subspaces spanned
by the matrices U,V and W are of importance, different local minima may
lead to completely different results. This is for instance the case when the
approximation is computed in a preprocessing dimensionality reduction step,
prior to the computation of a PARAFAC decomposition. It is clear that fine-
tuning steps after expansion may improve the results. However, one should
be aware that in the case of multiple local minima, the compression step may
not produce an intermediate tensor that really captures the desired structure.
To assess whether it is likely that there are multiple local minima, one can
inspect the higher-other singular values. Results should be interpreted with
care if the higher-order singular values beyond the fixed multilinear rank are
not small.

If the global minimum is required or if different local minima might be
of interest, many initial points and several algorithms could be considered
at the same time. Different algorithms often converge to different solutions,
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even if started from the same initial values. After obtaining a set of solutions
that is large enough, the best solution should be retained.

An additional problem in the case when the subspaces are of interest,
is that the global minimum is not necessarily the required one. In general,
given a set of local minima, it can be unclear which one is the most suitable.
For example, let the tensor A that has to be approximated be defined as in
(4)–(6). The “true” tensor T has low multilinear rank. Hence, the matrices
from the truncated HOSVD represent the required “true” subspaces of T .
Among the different minima, the one that yields subspaces that are closest
to the “true” subspaces, is not necessarily the global minimum of (1). Let us
return to the example corresponding to Figure 1. We consider again the sub-
space angle between the “true” and the obtained subspaces. For σ = 2, the
subspaces corresponding to the lowest value of the cost function were closest
to the “true” subspaces. For σ = 4, things were different. In the experiment
five local minima were found by the trust-region algorithm. We number them
in increasing order starting from the one with lowest value of the cost func-
tion and ending with the one with highest value. (In Figure 1(c), minima
1 and 2 are almost indistinguishable. The same holds for minima 3 and 4.)
Table 2 shows which local minimum was closest to the true subspaces.

[Table 2 about here.]

Local minimum 1 was the closest with respect to U and W. However, with
respect to V, the fourth lowest minimum was the best. In our experiments we
also encountered examples where three different local minima corresponded
to the best estimate of the column space of U,V and W, respectively. In
situations like this, it is actually impossible to determine which of the local
minima should be chosen (at least, if one does not dispose of prior knowledge
about the solution). In such a case, the low multilinear rank approximation
problem cannot be solved in a meaningful way.

5. Using the truncated HOSVD as a starting value

It is usually a good idea to start from the truncated HOSVD. However,
in general this does not guarantee convergence of the existing algorithms
to the global optimum. For HOOI, this was already suggested in [28] and
was explicitly shown in [29, 16]. Numerical examples reveal that, not only
in specially constructed examples but also for random tensors, a better lo-
cal minimum (in the sense of a minimum that yields a smaller cost function
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value) can sometimes be obtained starting from another initial point. By way
of illustration, recall the example corresponding to Figure 4(b). In Figure 6,
we additionally show the minima obtained by HOOI and the trust-region al-
gorithm when started from the truncated HOSVD. These clearly correspond
to non-global minima.

[Figure 6 about here.]

On the other hand, if there is a clear gap between the higher-order singu-
lar values at the truncation point, it is expected that taking the truncated
HOSVD as a starting value will yield good results.

6. Conclusions

The problem of the best low rank approximation of a matrix does not have
local minima. The solution is given by the truncated SVD. In this paper,
we have investigated the issue of local minima of the best low multilinear
approximation problem for higher-order tensors. An important difference
with the matrix case is that this problem can have more than one minimum.

Depending on the difficulty of the problem, a larger or a smaller number of
minima is found. The difficulty of the problem is related to the distribution
of the higher-order singular values of the given tensor. If there is a gap
between the (Rn)-th and (Rn + 1)-th mode-n singular values, n = 1, 2, 3,
the best rank-(R1, R2, R3) approximation problem seems to be easier and
fewer minima are found. This is for example the case when a tensor with
low multilinear rank is mildly perturbed by additive noise. On the other
hand, if the original tensor has no distinct low multilinear rank structure,
or if the low multilinear rank structure does not correspond to the imposed
multilinear rank, the problem is more difficult. As a matter of fact, we try
to retrieve a structure that is not present. In this case, more equally good,
or equally bad, solutions are found.

We further discussed how problematic the existence of different local min-
ima really is. First of all, the values of the cost function at the different local
minima can be very close. In this case, for applications where only this value
is of interest, the existence of local minima is not problematic. This applies
for example, when the multilinear rank approximation is merely used as a
compression tool for memory savings. On the other hand, the subspaces
corresponding to the projection matrices U,V and W are very different at
different local minima. The latter is an important obstacle for applications

10



where these subspaces are of importance. An important example is the use of
the low multilinear rank approximation for reducing the dimensionality prior
to the computation of a PARAFAC decomposition. Here, the distribution
of the higher-order singular values has to be examined carefully in order to
chose a meaningful multilinear rank for the approximation.

The truncated HOSVD often gives good starting values for the matrices
U,V and W. However, convergence to the global minimum is not guaran-
teed. To find the global minimum, one might run several algorithms with
different initial values. Moreover, a good solution does not necessarily ex-
ist. For example, if a tensor with low multilinear rank is affected by a large
amount of noise, the subspaces corresponding to the local minima are not
necessarily close to the subspaces of the original noise-free tensor. This is a
warning that the solutions of the approximation problem have to be exam-
ined carefully.

In this paper we used the higher-order singular values to obtain insight
in the difficulty of the problem. We do not claim that the gap between the
higher-order singular values is the most accurate parameter to quantify the
condition of the problem. As an alternative, one might consider the difference
between the norm of the approximation and the norm obtained when one of
the mode-n ranks is increased by one.
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(c) σ = 4

Figure 1: Local minima for different noise levels. The tensors A ∈ R10×10×10 are as in (4)–
(6) with a T and a E yielding results that we find representative. 100 runs were performed
starting from different arbitrary column-wise orthonormal matrices U0,V0, and W0. A
run was stopped if the algorithm did not converge (‖grad g(X)‖/g(X) < 10−9) in 200
iterations.
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Figure 2: Values of the cost function f at local minima and the distance between the
values of the local minima for different noise levels σ. The tensors A ∈ R10×10×10 are as
in (4)–(6). 100 runs were performed for each σ with the trust-region algorithm, starting
from different arbitrary column-wise orthonormal U0,V0, and W0. A run was stopped if
the algorithm did not converge (‖grad g(X)‖/g(X) < 10−9) in 200 iterations.
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A ∈ R10×10×10 are as in (4)–(6).
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Figure 4: Local minima for different multilinear ranks. The entries of the tensor
A ∈ R10×10×10 are taken from a normal distribution with zero mean and unit stan-
dard deviation. 100 runs were performed starting from different arbitrary column-wise
orthonormal U0,V0, and W0. A run was stopped if the algorithm did not converge
(‖grad g(X)‖/g(X) < 10−9) in 200 iterations.
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Figure 5: Local minima, corresponding to Table 1. The tensor A ∈ R10×10×10 has el-
ements taken from a normal distribution with zero mean and unit standard deviation.
The imposed multilinear rank was (2, 2, 2). 10 runs were performed with the trust-region
algorithm starting from different arbitrary column-wise orthonormal U0,V0, and W0. A
run was stopped when ‖grad g(X)‖/g(X) < 10−9.
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Figure 6: Local minima as in Figure 4(b). Here, two additional points are shown. They
correspond to the outcome of HOOI and the trust-region algorithm, initialized with the
truncated HOSVD.
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(a) Largest subspace angle

1 2 3 4 5 6 7 8 9 10

1 2.01E-16 1.388476 1.182443 1.471074 1.528923 0.89849 0.89849 5.23E-10 0.89849 5.80E-10

2 1.388476 2.21E-16 1.441407 1.512369 0.809631 1.410662 1.410662 1.388476 1.410662 1.388476

3 1.182443 1.441407 2.62E-16 1.543829 1.556697 1.03913 1.03913 1.182443 1.03913 1.182443

4 1.471074 1.512369 1.543829 2.23E-16 1.356632 1.523707 1.523707 1.471074 1.523707 1.471074

5 1.528923 0.809631 1.556697 1.356632 6.31E-16 1.454416 1.454416 1.528923 1.454416 1.528923

6 0.89849 1.410662 1.03913 1.523707 1.454416 4.36E-16 2.08E-10 0.89849 1.97E-10 0.89849

7 0.89849 1.410662 1.03913 1.523707 1.454416 2.08E-10 4.70E-16 0.89849 3.99E-11 0.89849

8 5.23E-10 1.388476 1.182443 1.471074 1.528923 0.89849 0.89849 2.50E-16 0.89849 1.87E-10

9 0.89849 1.410662 1.03913 1.523707 1.454416 1.97E-10 3.99E-11 0.89849 2.08E-16 0.89849

10 5.80E-10 1.388476 1.182443 1.471074 1.528923 0.89849 0.89849 1.87E-10 0.89849 6.55E-17

(b) Second largest subspace angle

1 2 3 4 5 6 7 8 9 10

1 0 0.431241 0.018366 1.227264 0.139027 0.069378 0.069378 0 0.069378 0

2 0.431241 0 1.146175 0.75854 0.252364 1.078618 1.078618 0.431241 1.078618 0.431241

3 0.018366 1.146175 0 0.745548 1.146822 0.080504 0.080504 0.018366 0.080504 0.018366

4 1.227264 0.75854 0.745548 0 1.06264 1.319963 1.319963 1.227264 1.319963 1.227264

5 0.139027 0.252364 1.146822 1.06264 0 0.936273 0.936273 0.139027 0.936273 0.139027

6 0.069378 1.078618 0.080504 1.319963 0.936273 0 0 0.069378 0 0.069378

7 0.069378 1.078618 0.080504 1.319963 0.936273 0 0 0.069378 0 0.069378

8 0 0.431241 0.018366 1.227264 0.139027 0.069378 0.069378 0 0.069378 0

9 0.069378 1.078618 0.080504 1.319963 0.936273 0 0 0.069378 0 0.069378

10 0 0.431241 0.018366 1.227264 0.139027 0.069378 0.069378 0 0.069378 0

Table 1: Subspace angles between different matrices U, obtained with the trust-region algorithm. 10 different initial points
were considered. The elements of A ∈ R10×10×10 were taken from a normal distribution with zero mean and unit standard
deviation. The imposed multilinear rank was (2, 2, 2). A run was stopped when ‖grad g(X)‖/g(X) < 10−9.
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U V W
σ = 2 1 1 1
σ = 4 1 4 1

Table 2: We consider the two largest noise levels σ in the experiment presented in Figure 1.
The table indicates for U,V and W separately, which local minimum was the closest to
the “true” subspace.
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