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A Gradient-Descent Method for Curve Fitting on

Riemannian Manifolds∗
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Abstract

Given data points p0, . . . , pN on a closed submanifold M of Rn and time instants 0 = t0 <

t1 < . . . < tN = 1, we consider the problem of finding a curve γ on M that best approximates
the data points at the given instants while being as “regular” as possible. Specifically, γ is
expressed as the curve that minimizes the weighted sum of a sum-of-squares term penalizing
the lack of fitting to the data points and a regularity term defined, in the first case as the
mean squared velocity of the curve, and in the second case as the mean squared acceleration of
the curve. In both cases, the optimization task is carried out by means of a steepest-descent
algorithm on a set of curves on M . The steepest-descent direction, defined in the sense
of the first-order and second-order Palais metric, respectively, is shown to admit analytical
expressions involving parallel transport and covariant integral along curves. Illustrations are
given in Rn and on the unit sphere.

Keywords: curve fitting, steepest-descent, Sobolev space, Palais metric, geodesic distance,
energy minimization, splines, piecewise geodesic, smoothing, Riemannian center of mass.

1 Introduction

We are interested in the problem of fitting smooth curves to given finite sets of points on Rie-
mannian manifolds. Let p0, p1, . . . , pN be a finite set of points on a Riemannian manifold M , and
let 0 = t0 < t1 < ... < tN = 1 be distinct and ordered instants of time. The problem of fitting
a smooth curve γ on M to the given points at the given times involves two goals of conflicting
nature. The first goal is that the curve should fit the data as well as possible, as measured, e.g.,
by the real-valued function Ed defined by:

Ed(γ) =

N
∑

i=0

d2(γ(ti), pi), (1)

where d denotes the distance function on the Riemannian manifold M . The second goal is that
the curve should be sufficiently “regular”, as measured by a function γ 7→ Es(γ) such as (2) or (3)
below. We are thus facing an optimization problem with two objective functions—a fitting function
Ed and a regularity function Es—whose domain is a suitable set of curves on the Riemannian
manifold M .

Curve fitting problems on manifolds appear in various applications. To cite but one example,
let (Ii)i≤N be a temporal sequence of images of a 2D or 3D object motion, in which the object
can appear and disappear at arbitrary times due to obscuration and other reasons. The task is to
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estimate the missing data and recover the motion of the object as well as possible. It is clear that
focussing on the first goal (fitting the data) without concern for the second goal (regularity of the
curve) would yield poor motion recovery, and that the result is likely to be improved if inherent
regularity properties of the object motion are taken into account. The features of interest in such
tracking problems are often represented as elements of nonlinear manifolds. An important feature
in object tracking and recognition is the shape formed by its silhouette in an image.

1.1 Previous work

One possible way of tackling an optimization problem with two objective functions is to turn it
into a classical optimization problem where one of the objective functions becomes the objective
function and the other one is turned into a constraint.

Let us first discuss the case where the fitting objective function Ed is minimized under a
regularity constraint. When M = Rn, a classical regularity constraint is to restrict the curve γ
to the family of polynomial functions of degree not exceeding m, (m ≤ N). This least-squares
problem cannot be straightforwardly generalized to an arbitrary Riemannian manifold M because
the notion of polynomial does not carry to M in an obvious way. An exception is the case m = 1;
the polynomial functions in Rn are then straight lines, whose natural generalization on Riemannian
manifolds are geodesics. The problem of fitting a geodesic to data on Riemannian manifold M
was considered in [MS06] for the case where M is the special orthogonal group SO(n) or the unit
sphere Sn.

The other case is when a regularity criterion Es is optimized under a constraint on Ed, in which
case it is natural to impose the interpolation constraint Ed(γ) = 0. For example, when M = Rn,
minimizing the function Es defined by

Es,1(γ) =
1

2

∫ 1

0

‖γ̇(t)‖
2
dt (2)

yields the piecewise-linear interpolant for the given data points and time instants (this follows
from [Mil63, p. 70]), while minimizing

Es,2(γ) =
1

2

∫ 1

0

‖γ̈(t)‖2dt

yields solutions known as cubic splines. (From now on, we will frequently omit the variable t in
the integrand when it is clear from the context.) For the case where M is a nonlinear manifold,
several results on interpolation can be found in the literature. The generalization of cubic splines
to more general Riemannian manifolds was pioneered by Noakes et al. [NHP89]. Cubic splines are
then defined as curves that minimize the function

Es,2(γ) =
1

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

γ(t)

dt, (3)

where D2γ
dt2

denotes the (Levi-Civita) second covariant derivative of γ and 〈·, ·〉p stands for the
Riemannian metric on M at p. (The subscript may be omitted if there is no risk of confusion.)
A necessary condition for optimality takes the form of a fourth-order differential equation. This
variational approach was followed by other authors, including Crouch and Silva Leite [CS91, CS95].
Splines of class Ck were generalized to Riemannian manifolds by Camarinha et al. [CSC95]. Still in
the context of interpolation on manifolds, but without a variational interpretation, we mention the
literature on splines based on generalized Bézier curves, defined by a generalization to manifolds
of the de Casteljau algorithm; see [CKS99, Alt00, PN07]. Recently, Jakubiak et al. [JSR06]
presented a geometric two-step algorithm to generate splines of an arbitrary degree of smoothness
in Euclidean spaces, then extended the algorithm to matrix Lie groups and applied it to generate
smooth motions of 3D objects. Another approach to interpolation on manifolds consists of mapping
the data points onto the affine tangent space at a particular point of M , then computing an
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interpolating curve in the tangent space, and finally mapping the resulting curve back to the
manifold. The mapping can be defined, e.g., by a rolling procedure, see [HS07, KDL07].

Another way of tackling an optimization problem with two objective functions is to optimize a
weighted sum of the objective functions. Spherical smoothing splines on the two dimensional unit
sphere were originally studied by Jupp and Kent [JK87]. This approach was followed on general
manifolds by Machado et al. [MSH06] using the first-order smoothing term (2) and by Machado
and Silva Leite [MS06] for the second-order smoothing term (3).

Specifically, in [MSH06], the objective function is defined to be

E1 ≡
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈γ̇, γ̇〉dt,

over the class of all piecewise smooth curves γ : [0, 1] → M , where λ (> 0) is a smoothing
parameter. Solutions to this variational problem are piecewise geodesics that best fit the given
data. As shown in [MSH06], when λ goes to +∞, the optimal curve converges to a single point
which is shown in [MLK10] to be the Riemannian mean of the data points. When λ goes to zero,
the optimal curve goes to a broken geodesic on M interpolating the data points.

In [MS06], the objective function is defined to be

E2 ≡
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

dt

over a certain set of admissible C2 curves. The authors give a necessary condition of optimality that
takes the form of a fourth-order differential equation involving the covariant derivative and the cur-
vature tensor along with certain regularity conditions at the time instants ti, i = 0, . . . , N [MS06,
Th. 4.4]. The optimal curves are approximating cubic splines: they are approximating because in
general γ(ti) differs from pi, and they are cubic splines because they are obtained by smoothly
piecing together segments of cubic polynomials on M , where “cubic polynomial on M” is under-
stood in the sense of Noakes et al. [NHP89]. It is also shown in [MS06, Prop. 4.5] that, as the
smoothing parameter λ goes to +∞, the optimal curves converge to a geodesic curve on M fitting
the given data points at the given instants of time. When λ goes to zero, the approximating cubic
spline converges to an interpolating cubic spline [MS06, Prop. 4.6].

1.2 Our approach

In this paper, rather than trying to solve directly the fourth-order differential equation obtained
in [MS06] (a feat that is not attempted there, except for M = Rn), we propose to search for an
optimizer of the objective function using a steepest-descent method in an adequate set of curves
on the Riemannian manifold M . In this section, we present the essence of our approach, and delay
the mathematical technicalities until Section 2.

As in [MS06], we consider the problem of minimizing the objective function

E2 : Γ2 → R : γ 7→ E2(γ) = Ed(γ) + λEs,2(γ)

=
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

dt, (4)

where Γ2 is an adequate set of curves on M to be defined in Section 2. The steepest-descent
direction for E2 is defined with respect to the second-order Palais metric defined by

〈〈v, w〉〉2,γ = 〈v(0), w(0)〉γ(0) +

〈

Dv

dt
(0),

Dw

dt
(0)

〉

γ(0)

+

∫ 1

0

〈

D2v

dt2
,
D2w

dt2

〉

γ(t)

dt, (5)

where v and w are tangent vector fields along γ. We assume that M is a closed Riemannian
submanifold of Rn—a mild condition in virtue of Nash’s isometric embedding theorem—since the
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required theory on the Palais metric is only available in this case [Tro77, Prop. 6.1]. Consequently,
the Levi-Civita covariant derivative D

dt
along γ reduces to the classical derivative in Rn followed

by the orthogonal projection onto the tangent space to M at γ(t); see, e.g., [Boo03, §VII.2].
As we shall see in Section 4, the choice of the second-order Palais metric (5) ensures that

the gradient of E2 at γ, represented by a vector field G along γ, admits an analytical expression
involving parallel transport and covariant integral along γ. This expression makes it possible to
implement a steepest-descent algorithm on Γ2, where the next iterate is obtained from the current
iterate γ using a line-search procedure along the path τ 7→ γτ on Γ2 defined by

γτ (t) = expγ(t)(−τG(t));

see Section 5. We use an Armijo backtracking procedure, but other stepsize selection methods
would be suitable.

We also present a gradient-descent approach for the objective function of [MSH06], namely

E1 : Γ1 → R : γ 7→ E1(γ) = Ed(γ) + λEs,1(γ)

=
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈γ̇, γ̇〉 dt, (6)

where Γ1 is another adequate set of curves on M defined in Section 2. For E1, the steepest-descent
direction is considered with respect to the first-order Palais metric defined by

〈〈v, w〉〉1,γ = 〈v(0), w(0)〉γ(0) +

∫ 1

0

〈

Dv

dt
,
Dw

dt

〉

γ(t)

dt, (7)

where v and w are tangent vector fields along γ.
This choice confers a simple expression to the gradient; see Section 3.
Observe that the parameter λ makes it possible to balance between the two conflicting goals

mentioned above: when λ is large, a higher emphasis is on the regularity condition relative to the
fitting condition, whereas when λ is small, the fitting condition dominates.

The rest of the paper is organized as follows. Section 2 deals with the choice of the curve spaces
Γ1 and Γ2. An expression for the gradient of E1, resp. E2, is given in Section 3, resp. 4. The
steepest-descent method is presented in Section 5. Numerical illustrations are given in Section 6
for M = R2 and M = S2. Section 7 contains final remarks.

2 Preliminaries

In this section, we exploit results of Palais [Pal63, §13] and Tromba [Tro77, §6] to define the
domain Γ of the objective function E in such a way that the gradient of E with respect to the
Palais metric is guaranteed to exist and to be unique.

2.1 First-order case

We first consider the objective function E1 defined in (6). Let I denote the unit interval [0, 1] and
let H0(I, Rn) denote the set of square integrable functions from I to Rn. The set H0(I, Rn) is a
Hilbert space under pointwise operations and with the inner product 〈〈·, ·〉〉0 defined by

〈〈v, w〉〉0 =

∫ 1

0

〈v(t), w(t)〉 dt,

where 〈·, ·〉 is the standard inner product in Rn. Let H1(I, Rn) denote the set of absolutely
continuous maps γ : I → Rn such that γ̇ ∈ H0(I, Rn). Note that absolute continuity is equivalent
to requiring that γ̇(t) exists for almost all t ∈ I, that γ̇ is summable, and that

γ(t) = γ(0) +

∫ t

0

γ̇(s) ds.
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Then H1(I, Rn) is a Hilbert space under the inner product 〈〈·, ·〉〉1 defined by

〈〈v, w〉〉1 = 〈v(0), w(0)〉 +

∫ 1

0

〈v̇(t), ẇ(t)〉 dt (8)

This inner product belongs to a class of Riemannian structures proposed by Linnér [Lin03, §3].
Let M be a closed Ck+4-submanifold of Rn (k ≥ 1). Define H1(I,M) to be the set of all

γ ∈ H1(I, Rn) such that γ(I) ⊆ M . Then H1(I,M) is a closed Ck-submanifold of the Hilbert
space H1(I, Rn). We set

Γ1 = H1(I,M), (9)

which ensures that E1 (6) is a well defined Ck map around each γ ∈ Γ1 such that, for all i, pi

is in the image of the domain of injectivity of the exponential mapping at γ(ti) (see Lazard and
Tits [LT66] for the case where the manifold is a Lie group).

The tangent space to H1(I,M) at a curve γ ∈ H1(I,M) is given by

TγH1(I,M) = {v ∈ H1(I, TM) : v(t) ∈ Tγ(t)M for all t ∈ I},

where TM denotes the tangent bundle of M . Moreover, H1(I,M) is a complete Ck-Riemannian
manifold in the Riemannian structure induced on it as a closed Ck-submanifold of H1(I, Rn).

Note that the induced Riemannian structure on H1(I,M) induced by (8) is the “extrinsic”
structure given by

〈v(0), w(0)〉 +

∫ 1

0

〈v̇(t), ẇ(t)〉 dt

where v̇ and ẇ are the derivatives in the sense of the embedding space Rn. It thus differs from the
“intrinsic” first-order Palais metric defined in (7). However, the extrinsic and intrinsic Riemannian
structures are equivalent on bounded sets [Tro77, Prop. 6.1].

From this, it follows that, given γ ∈ H1(I,M), the tangent space TγH1(I,M) endowed with
the inner product (7) is a Hilbert space. This fact will be exploited in Section 2.3.

2.2 Second-order case

We now turn to the objective function E2 defined in (4). Let H2(I, Rn) be the set of maps
γ : I → Rn with γ ∈ H1(I, Rn) and γ̇ ∈ H1(I, Rn). Then H2(I, Rn) is a vector space under
pointwise operations, and the map

Φ : Rn × Rn × H0(I, Rn) → H2(I, Rn) : (γ0, γ̇0, h) 7→ γ,

defined by γ(0) = γ0, γ̇(0) = γ̇0, γ̈(t) = h(t) for all t ∈ I, is an isomorphism. In H2(I, Rn),
consider the inner product 〈〈·, ·〉〉2 defined by

〈〈v, w〉〉2 = 〈v(0), w(0)〉 + 〈v̇(0), ẇ(0)〉 +

∫ 1

0

〈v̈(t), ẅ(t)〉 dt.

Then Φ is an isometry and H2(I, Rn) is a Hilbert space.
Let M be a closed Ck+4-submanifold of Rn (k ≥ 1). Define H2(I,M) to be the set of all

γ ∈ H2(I, Rn) such that γ(I) ⊆ M . Then, by restricting the proof of [Pal63, Th. 6.6] to H2(I,M),
one obtains that H2(I,M) is a closed Ck-submanifold of the Hilbert space H2(I, Rn). We set

Γ2 = H2(I,M), (10)

which ensures that E2 is well defined. The tangent space to H2(I,M) at a curve γ ∈ H2(I,M) is
given by

TγH2(I,M) = {v ∈ H2(I, TM) : v(t) ∈ Tγ(t)M for all t ∈ I}.

Given γ ∈ H2(I,M), consider the mapping

Φ : Tγ(0)M × Tγ(0)M × H0(I, Tγ(0)M) → TγH2(I,M)

5



that maps (v0, v̇0, g) to the vector field v along γ defined by

v(0) = v0,
Dv

dt
(0) = v̇0,

D2v

dt2
(t) = P t←0

γ g(t),

where P t←0
γ is the parallel transport along γ. Recall that the parallel transport is an isometry.

The map Φ is an isomorphism of vector spaces between its domain and image, and it is an isometry
with the obvious metric on the domain and the second-order Palais metric (5) on the image. Since
the domain of Φ is a Hilbert space, its image is also a Hilbert space endowed with the inner
product (5). Hence the Riesz representation theorem applies.

2.3 Existence and uniqueness of the gradient of E

For i = 1, 2, the gradient of Ei at γ is defined to be the unique Gγ ∈ TγHi(I,M) that satisfies,
for all w ∈ TγHi(I,M),

〈〈Gγ , w〉〉
i,γ

= DEi(γ)[w],

where DEi(γ)[w] denotes the derivative of Ei at γ along w. The existence and uniqueness of G are
guaranteed by the Riesz representation theorem. We will use the notation ∇Ei(γ) for the gradient
of a function Ei at γ, or simply Gγ when Ei and γ are clear from the context.

3 Gradient of E1 in the first-order Palais metric

We derive an expression for the gradient of E1 = Ed + λEs,1 (6) over Γ1 (9) endowed with the
first-order Palais metric (7). The gradient evaluated at a curve γ involves the operations of parallel
transport and covariant integral along γ.

3.1 Derivative of Ed

We first give an expression for the derivative of the ith term in Ed, namely,

fi : Γ1 → R : γ 7→
1

2
d2(γ(ti), pi).

Let expp denote the Riemannian exponential map at p ∈ M ; see, e.g., [Boo03, dC92]. Since
M is a closed Riemannian submanifold of Rn, it follows that M is complete (see [Pal63, p. 326]),
which means that expp ξ exists for all ξ ∈ TpM . If q ∈ M is not in the cut locus of p, then there
exists a unique minimizing geodesic αpq with αpq(0) = p and αpq(1) = q (see [dC92, corollary
13.2.8]), and we define exp−1

p (q) = α̇pq(0). Note that in this case, it also holds that p is not in the
cut locus of q (see [dC92, corollary 13.2.7]), and we have exp−1

q (p) = −α̇pq(1). An expression for
the derivative of fi is readily obtained from the following result. A proof is given in Section A.

Theorem 3.1 (Karcher, 1977). Let M be a complete Riemannian manifold, let p be a point of

M and let q be a point of M that is not in the cut locus of p. Then the squared distance function

to p is differentiable at q and we have, for all ξ ∈ TqM ,

1

2
Dd2(p, ·)(q)[ξ] =

〈

ξ,− exp−1
q p

〉

.

In view of this result, we have that the derivative of fi at γ along w ∈ Tγ(Γ1) is

Dfi(γ)[w] = 〈w(ti), vi〉 , (11)

where
vi = − exp−1

γ(ti)
(pi),
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provided that γ(ti) is not in the cut locus of pi. This is a mild condition, since the cut locus has
measure zero [GHL04, lemma 3.96]. Finally, the derivative of Ed is given by

DEd(γ)[w] =
N

∑

i=0

〈w(ti), vi〉 .

3.2 Gradient of Ed

The gradient of fi at γ, with respect to the first-order Palais metric (7), is the unique element gi

of TγΓ1 such that, for all w ∈ TγΓ1,

〈〈gi, w〉〉1 = Dfi(γ)[w]. (12)

The next theorem gives an expression for gi.

Theorem 3.2. The gradient of the function fi : Γ1 → R : γ 7→ 1
2d2(γ(ti), pi) evaluated at γ ∈ Γ1

is the vector field gi along γ defined by

gi(t) =

{

(1 + t)ṽi(t), 0 ≤ t ≤ ti
(1 + ti)ṽi(t), ti ≤ t ≤ 1

,

where vi = − exp−1
γ(ti)

(pi) ∈ Tγ(ti)M and ṽi is the parallel transport of vi along γ.

Proof. In view of (7), (11), and (12), gi is the unique element of TγΓ1 (vector field along γ) that
satisfies

〈gi(0), w(0)〉 +

∫ 1

0

〈

Dgi

dt
(t),

Dw

dt
(t)

〉

dt = 〈vi, w(ti)〉 (13)

for all w ∈ TγΓ1. Let ṽi denote the parallel transport of vi along γ, and observe that ṽi(ti) = vi.
We have

〈vi, w(ti)〉 = 〈ṽi(0), w(0)〉 +

∫ ti

0

d

dt
〈ṽi(t), w(t)〉 dt

since t 7→ 〈ṽi(t), w(t)〉 is absolutely continuous,

= 〈ṽi(0), w(0)〉 +

∫ ti

0

〈

Dṽi

dt
(t), w(t)

〉

+

〈

ṽi(t),
Dw

dt
(t)

〉

dt

by a defining property of the Levi-Civita covariant derivative,

= 〈ṽi(0), w(0)〉 +

∫ ti

0

〈

ṽi(t),
Dw

dt
(t)

〉

dt

since D
dt

ṽi = 0 by definition of parallel transport. It follows that gi satisfies

gi(0) = ṽi(0),

Dgi

dt
(t) =

{

ṽi(t), 0 < t < ti,

0, ti < t < 1.

The solution is given by

gi(t) =

{

(1 + t)ṽi(t), 0 ≤ t ≤ ti,

(1 + ti)ṽi(t), ti ≤ t ≤ 1.
(14)

7



Observe that gi is covariantly linear from 0 to ti, and is covariantly constant from ti to 1. In
other words, the covariant derivative of gi is covariantly constant (ṽi) until ti, and it is 0 after
that. Note also that ṽi(ti) = vi.

Once we have the gradient for each of the terms in Ed, the gradient of Ed, under the first-order
Palais metric, is simply their sum

G1 =

N
∑

i=0

gi. (15)

3.3 Derivative of Es,1

The derivative and gradient of Es,1 (2) can be readily deduced, e.g., from [Tro77, §6] or [KS06,
Th. 1]. We give a full development here for convenience.

Recall that

Es,1(γ) =
1

2

∫ 1

0

〈γ̇(t), γ̇(t)〉 dt.

Define a variation of γ to be a smooth function h : [0, 1] × (−ǫ, ǫ) → M : (t, s) 7→ h(t, s) such
that h(t, 0) = γ(t) for all t ∈ [0, 1]. The variational vector field corresponding to h is given by
w(t) = hs(t, 0), where hs(t, s) stands for ∂h

∂s
(t, s). Thinking of h as a path of curves in M , we

define F (s) as the energy of the curve obtained by restricting h to [0, 1] × {s}. That is,

F (s) =
1

2

∫ 1

0

〈ht(t, s), ht(t, s)〉 dt .

We now compute,

F ′(0) =

∫ 1

0

〈

Dht

ds
(t, 0), ht(t, 0)

〉

dt =

∫ 1

0

〈

Dhs

dt
(t, 0), ht(t, 0)

〉

dt =

∫ 1

0

〈

Dw

dt
(t), γ̇(t)

〉

dt,

since ht(t, 0) is simply γ̇(t). Hence the derivative of Es,1 at γ along w is given by

DEs,1(γ)[w] =

∫ 1

0

〈

Dw

dt
(t), γ̇(t)

〉

dt. (16)

3.4 Gradient of Es,1

In view of the above expression for the derivative of Es,1, we derive in the next theorem an
expression for the gradient of Es,1.

Theorem 3.3. The vector field H1 along γ that provides the gradient of the function Es,1 (2) on

Γ1 (9) with respect to the first-order Palais metric (7) satisfies the equation:

DH1

dt
(t) = γ̇(t), H1(0) = 0. (17)

Proof. In view of (16), H1 is the unique vector field along γ that satisfies

〈w(0),H1(0)〉 +

∫ 1

0

〈

Dw

dt
(t),

DH1

dt
(t)

〉

dt =

∫ 1

0

〈

Dw

dt
(t), γ̇(t)

〉

dt,

for all w ∈ TγΓ1. The result follows.

In the case M = Rn, the gradient vector field is simply H1(t) = γ(t) − γ(0).

3.5 Gradient of E1

Since E1 = Ed + λEs,1, the gradient of E1 follows directly from the gradients of Ed and Es,1

computed above. We thus have that ∇E1 = G1 + λH1, with G1 given by (15) and H1 given
by (17).
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4 Gradient of E2 in the second-order Palais metric

Recall that E2 = Ed + λEs,2 is defined on Γ2 (10) by

E2(γ) =
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

dt. (18)

The purpose of this section is to obtain an expression for the gradient of E2 with respect to the
second-order Palais metric (5).

4.1 Gradient of Ed

The derivative does not depend on the metric, in contrast to the gradient. Thus we have, as in
Section 3,

Dfi(γ)[w] = 〈w(ti), vi〉 ,

where fi denotes the function γ 7→ 1
2d2(γ(ti), pi) and vi = − exp−1

γ(ti)
(pi).

Theorem 4.1. The gradient of the function fi : Γ2 → R : γ → d2(pi, γ(ti)) at γ ∈ Γ2 with respect

to the second-order Palais metric (5) is given by the vector field gi along γ defined by

gi(t) =

{

(1 + tit + 1
2 tit

2 − 1
6 t3)ṽi(t) 0 ≤ t ≤ ti

(1 + tti + 1
2 tt2i −

1
6 t3i )ṽi(t) ti ≤ t ≤ 1,

where ṽi is the parallel transport of vi along γ.

Proof. In view of (5) and (11), gi is the unique tangent vector field along γ that satisfies

〈gi(0), w(0)〉 +

〈

Dgi

dt
(0),

Dw

dt
(0)

〉

+

∫ ti

0

〈

D2g

dt2
(t),

D2w

dt2
(t)

〉

dt = 〈vi, w(ti)〉 .

We have

〈vi, w(ti)〉 = 〈ṽi(0), w(0)〉 + ti
d

dt
〈ṽi(t), w(t)〉 |t=0 +

∫ ti

0

(ti − t)
d2

dt2
〈ṽi(t), w(t)〉 dt

by Taylor’s theorem with remainder in integral form,

= 〈ṽi(0), w(0)〉 + ti

〈

ṽi(0),
Dw

dt
(0)

〉

+

∫ ti

0

(ti − t)

〈

ṽi(t),
D2w

dt2
(t)

〉

dt

for reasons already given in the proof of Theorem 3.2. It follows that

gi(0) = ṽi(0),

Dgi

dt
(0) = tiṽi(0),

D2gi

dt2
(t) =

{

(ti − t)ṽi(t), 0 < t < ti,

0, ti < t < 1.

Solving for gi, we obtain:

gi(t) =

{

(1 + tit + 1
2 tit

2 − 1
6 t3)ṽi(t), 0 ≤ t ≤ ti,

(1 + tti + 1
2 tt2i −

1
6 t3i )ṽi(t), ti ≤ t ≤ 1.

(19)

This gradient function is a covariantly cubic polynomial before ti and is a covariantly linear
polynomial after ti. The total gradient is given by G2(t) =

∑N
i=0 gi(t). Another way of writing

this summation is, for ti−1 ≤ t ≤ ti,

G2(t) =

i−1
∑

j=0

(1 + ttj +
1

2
tt2j −

1

6
t3j )ṽj(t) +

N
∑

j=i

(1 + tjt +
1

2
tjt

2 −
1

6
t3)ṽj(t). (20)
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4.2 Derivative of Es,2

Let h(t, s) be a collection, indexed by s, of elements of the curve set Γ2. Hence, for a fixed s, we
have a curve on M parameterized by t. For s = 0, that curve is called γ. Then w defined by
w(t) = hs(t, 0) is a generic tangent vector to Γ2 at γ. We have DEs,2(γ)[w] = d

ds
F (s)

∣

∣

s=0
, where

F (s) =
1

2

∫ 1

0

〈

D

dt
(ht(t, s)),

D

dt
(ht(t, s))

〉

dt.

Taking the derivative with respect to s:

d

ds
F (s) =

∫ 1

0

〈

D

ds
(
D

dt
(ht(t, s))),

D

dt
(ht(t, s))

〉

dt

=

∫ 1

0

〈

[R(hs(t, s), ht(t, s))(ht(t, s)) +
D

dt
(
D

ds
(ht(t, s)))],

D

dt
(ht(t, s))

〉

dt,

where R is the Riemannian curvature tensor defined as:

R(hs, ht)(v) =
D

ds

D

dt
(v) −

D

dt

D

ds
(v).

(Note that the curvature tensor is sometimes defined with the opposite sign in the literature.)
Since D

ds
(ht) = D

dt
(hs), the desired derivative at s = 0 becomes:

d

ds
F (s)|s=0 =

∫ 1

0

〈

[R(w, γ̇)(γ̇) +
D2

dt2
(w)],

D

dt
(γ̇)

〉

dt

=

∫ 1

0

〈

R(w, γ̇)(γ̇),
D

dt
(γ̇)

〉

dt +

∫ 1

0

〈

D2

dt2
(w),

D

dt
(γ̇)

〉

dt. (21)

This is the sought expression for DEs,2(γ)[w].

4.3 Gradient of Es,2

We will analyze the two terms in (21) separately.
The Riemannian curvature tensor has certain symmetries: for vector fields a, b, c, d along γ,

〈R(a, b)(c), d〉 = −〈R(b, a)(c), d〉 = −〈R(a, b)(d), c〉 = 〈R(c, d)(a), b〉 ,

which allows us to rewrite the first term of (21) as

∫ 1

0

〈

R(
D2γ

dt2
(t), γ̇(t))(γ̇(t)), w(t)

〉

dt =

∫ 1

0

〈A(t), w(t)〉 dt,

where A denotes the vector field along the curve γ given by A(t) = R(D2γ
dt2

(t), γ̇(t))(γ̇(t)). We need
a vector field H2 along γ with the property that

〈H2(0), w(0)〉 + 〈H ′2(0), w′(0)〉 +

∫ 1

0

〈H ′′2 (t), w′′(t)〉 dt =

∫ 1

0

〈A(t), w(t)〉 dt

for all w ∈ TγΓ2, where we temporarily use the prime as simplified notation for D
dt

. We now
express the right-hand side of the latter equation in a form that matches the one of the left-hand
side. To this end, we let A[k] denote the kth covariant integral of A with zero conditions at t = 0.

Moreover, in keeping with previous notation, we let Ã[k](1) denote the parallel transport of A[k](1)
along γ. We have

∫ 1

0

〈A(t), w(t)〉 dt =

〈

A[1](t) − Ã[1](1)(t), w(t)

〉]1

0

−

∫ 1

0

〈

A[1](t) − Ã[1](1)(t), w′(t)

〉

dt

10



by integration by parts, where A[1] − Ã[1](1) is the primitive of A that vanishes at t = 1,

=

〈

Ã[1](1)(0), w(0)

〉

−

∫ 1

0

〈

A[1](t) − Ã[1](1)(t), w′(t)

〉

dt

since A[1](0) = 0 by definition,

=

〈

Ã[1](1)(0), w(0)

〉

−

〈

A[2](t) − tÃ[1](1)(t) − Ã[2](1) + Ã[1](1), w′(t)

〉]1

0

+

∫ 1

0

〈

A[2](t) − tÃ[1](1)(t) − Ã[2](1)(t) + Ã[1](1)(t), w′′(t)

〉

dt

by integration by parts,

=

〈

Ã[1](1)(0), w(0)

〉

+

〈

−Ã[2](1)(0) + Ã[1](1)(0), w′(0)

〉

+

∫ 1

0

〈

A[2](t) − tÃ[1](1)(t) − Ã[2](1)(t) + Ã[1](1)(t), w′′(t)

〉

dt,

which is the sought form. We can now conclude that

H2(0) = Ã[1](1)(0),

H ′2(0) = −Ã[2](1)(0) + Ã[1](1)(0),

H ′′2 (t) = A[2](t) − tÃ[1](1)(t) − Ã[2](1)(t) + Ã[1](1)(t), 0 ≤ t ≤ 1.

The solution is given by

H2(t) = Ĥ2(t) −
1

6
t3S̃(t) −

1

2
t2(Q̃(t) − S̃(t)) − t(Q̃(t) − S̃(t)) + S̃(t), (22)

where Ĥ2 = A[4], S = A[1](1) = Ĥ ′′′2 (1) and Q = A[2](1) = Ĥ ′′2 (1).

We now consider the second term in (21), that is,
∫ 1

0

〈

D2w
dt2

(t), D2γ
dt2

(t)
〉

dt. This term can be

written as 〈〈H3, w〉〉2 where H3 satisfies

D2H3

dt2
=

D2γ

dt2
, H3(0) =

DH3

dt
(0) = 0, (23)

that is, H3 is two times covariant integral of D2γ
dt2

with initial conditions H3(0) = DH3

dt
(0) = 0.

In summary, we have the following result.

Theorem 4.2. The vector field along γ that provides the gradient of the function Es,2 (3) on

Γ2 (10) with respect to the second-order Palais metric (5) is given by

H2(t) + H3(t), (24)

as follows: H2 admits the expression (22); Ĥ2 is given by D4Ĥ2

dt4
(t) = R(D2γ

dt2
(t), γ̇(t))(γ̇(t)) with

initial conditions Ĥ2(0) = DĤ2

dt
(0) = D2Ĥ2

dt2
(0) = D3Ĥ2

dt3
(0) = 0; Q̃ and S̃ are the parallel transport

along γ of Q = D2Ĥ2

dt2
(1) and of S = D3Ĥ2

dt3
(1); H3 is given by D2H3

dt2
= D2γ

dt2
with initial conditions

H3(0) = DH3

dt
(0) = 0.

In case M = Rn, the two terms are simply H2(t) = 0 and H3(t) = γ(t) − γ̇(0)t − γ(0) for all
t ∈ I.
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4.4 Gradient of E2

Combining the two gradient terms, we get the gradient of E2 under the second-order Palais metric:

∇E2 = G2 + λ(H2 + H3),

where G2 is given in (20), H2 in (22), and H3 in (23).

5 Steepest-descent algorithm on the curve spaces

Let E stand for E1 (6), resp. E2 (4), Γ for the set Γ1 (9), resp. Γ2 (10), of curves on the Riemannian
manifold M , and let Γ be endowed with the first-order Palais metric (7), resp. second-order Palais
metric (5). We propose the steepest-descent method for E described in Algorithm 1.

The algorithm creates a sequence of curves (γk)k=0,1,... ⊂ Γ with decreasing energy E(γk). The
initialization step consists in choosing an arbitrary curve in Γ to be the starting curve γ0. Then,
given the current iterate γk, the algorithm computes the gradient ∇E(γk) and updates the curve
to γk+1 according to

γk+1(t) = expγk(t)(−ρ̂k∇E(γk)(t)), t ∈ I,

where ρ̂k is a step size chosen using some step size selection rule (see, e.g., [Ber95]). For simplicity
of exposition, Algorithm 1 is stated with the simple Armijo backtracking rule; in the numerical
experiments presented in Section 6, we have used a more sophisticated strategy to satisfy the strong
Wolfe conditions. In practice, the algorithm is stopped when a certain pre-determined stopping
criterion is satisfied. The criterion can be a threshold on the norm of ∇E(γk), for example.

Algorithm 1 Gradient descent

1: Given an initial curve γ0 ∈ Γ and scalars ā > 0, b, σ ∈ (0, 1);
2: for k = 0, 1, 2, . . . do

3: Compute E(γk) and ∇E(γk);
4: Find the smallest integer m > 0 such that

E(expγk
(−ābm∇E(γk)) ≤ E(γk) + σ 〈〈∇E(γk),−ābm∇E(γk)〉〉γk

and set ρ̂k = ābm;
5: Set γk+1(t) = expγk(t)(−ρ̂k∇E(γk)(t));
6: end for

Whereas analyzing the convergence of steepest-descent type methods on finite-dimensional

manifolds is relatively simple (see [AG09]), the convergence analysis of steepest-descent methods
on infinite-dimensional spaces is no trivial matter; see [SZ04] and references therein. Analyzing
the convergence of Algorithm 1 is the object of ongoing research. Nevertheless, it is reasonable to
expect that the algorithm behaves like steepest-descent methods in finite dimension: the sequence
of iterates γk has a single limit (see [AMA05]) which, unless the initial curve is maliciously chosen,
is a local minimizer of the objective function E. These expectations are corroborated by our
numerical experiments; see Section 6.

6 Illustration on some specific manifolds: M = R2, S2

In this section we present some illustrations of our gradient descent approach to finding optimal
curves. In the case of Euclidean spaces, it is sometimes possible to derive expressions for the
optimal curves under E1 and E2 directly. In those situations, we can compare our numerical
solutions to the analytical expressions, and characterize the performances. In the remaining cases,
where the analytical solutions are not readily available, we will simply illustrate the results obtained
using our procedures. Examples involving the analytical expressions will have M = Rn and while
the other cases will have M = S2.
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Figure 1: (a) and (b): The minimum of E1 in M = R2 reached by the gradient descent method with
respect to Palais metric using different starting curves for λ = 1, (c): the step length variation, and (d):
the energy evolution versus iterations for the example shown in (a).

6.1 Analytical solution of E1 in R2

As the first example we will consider the problem of finding the optimal curves under E1 when
M = R2. For simplicity, we will take λ = 1 in (6). This case is simple enough to seek an analytical
expression as follows. Let N = 2 and let the three data points be given by p0 = (−A, 0),
p1 = (0, B), p2 = (A, 0), at the time instants t0 = 0, t1 = 0.5, t2 = 1, where A and B are two real
variables. Using the symmetry of the given points, and since we know that the optimal curves of
E1 are piecewise geodesics, we can restrict our search to piecewise-geodesic curves γ connecting
q0 = (−a, c), q1 = (0, b), and q2 = (a, c) at the three given time instants. Our goal is to find the
values of a, b, and c in R such that γ is a minimum of E1. By computing Ed and Es,1 manually
we get E1 = (A − a)2 + c2 + 1

2 (B − b)2 + 2(a2 + (b − c)2). The critical points are given by the

equation ∇E1 = 0, i.e., in terms of partial derivatives we have ∂E1

∂a
= ∂E1

∂b
= ∂E1

∂c
= 0. This

system has only one solution given by a = 1
3A, b = 3

7B, and c = 2
7B, and the minimum of E1 is

given by the piecewise geodesic curve connecting points q0 = (−A/3, 2B/7), q1 = (0, 3B/7), and
q2 = (A/3, 2B/7).

Shown in Figure 1((a) and (b)) are two optimal curves under E1 obtained by our algorithm, for
two different initial conditions. In each case, the green (dashed) curve shows the initial condition
and the black (dotted) curve shows the final result obtained numerically. The red (continuous)
curves show the optimal curve obtained using the analytical solution. The coincidence of black
and red curves shows the accuracy and the stability of our algorithm. In Figure 1((c) and (d))
we show the variation of the step length, and the variation of the cost function E1, respectively
versus iterations, corresponding to the example shown in Figure 1(a).

In Figure 2 we present some additional results for R2, this time restricting only to our numerical
solutions. These examples use a random set of points and different values of λ to demonstrate the
strength of the algorithm. Each of these solutions are piecewise geodesics and the end points of
the geodesic segments depend on the value of λ.
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Figure 2: The minimum of E1 in M = R2 reached by the gradient descent method with respect to
first-order Palais metric using different values of λ.
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6.2 Analytical solution of E2 in Rn

Next we derive the optimal curves under E2 for Euclidean spaces. It is interesting to note that
in this case the cost function has n components, each corresponding to a coordinate in Rn. In
other words, the problem breaks down into n independent problems, each being one-dimensional.
Therefore, it is sufficient to illustrate the analytical solution for the one-dimensional case.

To derive an analytical solution to the one-dimensional problem, we will first establish a number
of relations that this curve must satisfy and then use those relations to solve for the unknowns.
We start with the fact that γ̈(t) = Ḧ3(t) for all t. Therefore, γ takes the form:

γ(t) = H3(t) + rt + s ,

where r and s are two constants. Next, since γ is a critical point of E2, we have G2(t) = −H3(t)
(assuming λ = 1) for all t which makes γ(t) = −G2(t)+rt+s. Enumerating the different conditions
on γ, we obtain the following constraints.

1. Since H3(0) = 0, we have G2(0) = 0 which implies:

G2(0) =
n

∑

j=1

vj = 0 ,

where vj is as defined in Section 4.1.

2. Also, since Ḣ3(0) = 0, we have Ġ2(0) = 0 which means:

Ġ2(0) =
n

∑

j=1

vjtj = 0 .

3. Finally, since we know that γ(ti) = vi + pi, we get:

−G2(ti) + rti + s = vi + pi ,

which give us the relations: for i = 0, . . . , N

−
N

∑

j=0

(1 + tjti +
1

2
tjt

2
i −

1

6
t3i )vj −

i−1
∑

j=1

(1 + titj +
1

2
tit

2
j −

1

6
t3j )vj + rti + s = vi + pi . (25)

Rearranging this equation, we reach

n
∑

j=1

βj,ivj + rti + s = pi ,

where

βj,i =







−[(1 − 1
6 t3j ) + (tj + 1

2 t2j )ti] j < i
−[(2 + tjti + 1

2 tjt
2
i −

1
6 t3i )] j = i

−[(1 + tjti + 1
2 tjt

2
i −

1
6 t3i )] j > i

Taking these three types of relations, we form a linear system of equations. We have N + 3
equations and N + 3 unknowns:













1 1 . . . 1 0 0
t0 t1 . . . tN 0 0

β0,0 β1,0 . . . βN,0 t0 1
. . .

β0,N β1,N . . . βN,N tN 1

































v0

v1

v2

. . .
vN

r
s





















=

















0
0
p0

p1

. . .
pN

















. (26)
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Figure 3: The panels (a) and (b) show two examples of optimal curves under E2 obtained using our
numerical approach (black curve) and the analytical solution (red curve). The panels in (c) and (d) plot
the evolutions of E2 versus iterations for the cases (a) and (b), respectively. The curves in green (dashed)
are used as the initial curves for the optimization.

After solving for the vjs, r and s, we can evaluate the optimal curve γ(t) = −G2(t) + rt + s.
We present some examples for comparing the numerical solutions with this analytical solution

for n = 2. In the panels Figure 3 (a) and (b), we present two examples with three points each and
solve for the optimal curves under different λs. In each case, the green (dashed) line shows the
initial curve, the black line shows the optimal curve obtained numerically, and the red (continuous)
line shows the analytical solution. We have used a dotted pattern for the black (dotted) curve since
the two optimal curves match perfectly and one hides the other. As predicted by the theory, the
optimal solution resembles a straight line when λ is sufficiently large, and an interpolating spline
when λ is sufficiently small. The plots in panels (c) and (d) show the corresponding evolution of
E2 versus iterations.

In Figure 4, we present some additional examples of optimal curves (obtained using our nu-
merical method) under E2 in R2 for a variety of data points and λs. Each panel in this figure
shows the optimal γs for different (mostly small) values of λ but with the same data points. In
each case the initial curve for the gradient process is given by the green (dashed) curve.

6.3 Optimal Curves on the Unit Sphere

In this section we consider the case of M = S2 where the analytical expressions for the optimal
curves are not readily available, and we apply our numerical approach to find the solutions. In these
experiments, we first generate N +1 data points p0, p1, . . . , pN randomly on S2 and associate them
with different instants of time 0 = t0 < t1 < t2 < . . . < tn = 1. Then, we initialize our algorithm
by an arbitrary continuous curve γ0 ∈ Γ, and finally apply our gradient descent method to search
for the optimal curve γ∗ that minimizes E.

1. Case 1: In the case E = E1 we apply our algorithm as described in Section 3 and examples
are shown in Figure 5. Similar to the Euclidean case, the solutions are piecewise geodesic
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Figure 4: The optimal curves under E2 for different combinations of data points and λs.
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(a) (b) (c) (d)

Figure 5: Optimal curves under E1 for M = S2 obtained by our gradient descent method with respect to
the first-order Palais metric. (a): λ = 100, (b): λ = 1, (c) and (d): λ = 10, 1, 0.1, and 0.0001. In each
case the green curve shows the initial condition.

(a) (b)

Figure 6: The evolution of curves under the gradient iterations for minimizing E1. (a): λ = 10−5, (b):
λ = 100.

curves. Since geodesics on S2 are arcs that lie on great circles, these optimal curves are
piecewise arcs. The panels (a) and (b) show examples of optimal γ for N = 2 (three data
points) and N = 3 (four data points) with λ values being 100 and 1, respectively. For
λ = 100, the resulting optimal curve looks like a point. The remaining two panels (c) and
(d) show several optimal curves, each corresponding to different λs, for the same set of data
points. As earlier, the initial condition for the gradient descent is given by the green curve.

The Figure 6 shows two examples of the actual optimization process where the iterative
updates for γ under the gradient of E1 are shown. The process starts with the green curves
as the initial conditions and the updates are shown in black. The final curves in each case
are shown in red.

2. Case 2: In the case E = E2, we need to obtain an expression for the tangent vector field
A defined in Section 4.3, which involves the Riemannian curvature tensor R on M . Since
the unit sphere has constant sectional curvature k = 1, the curvature tensor is given by
R(X,Y )Z = k(〈Y,Z〉X − 〈X,Z〉Y ), k = 1; see, e.g., [Lee07]. Alternatively, this formula
is easily obtained from the material in Section B. Thus, for the vector field A defined in
Section 4.3, we have the expression

A = 〈γ̇, γ̇〉
D2γ

dt2
−

〈

D2γ

dt2
, γ̇

〉

γ̇. (27)

Using this expression, we first integrate A(t) covariantly to determine the term H2 of the
gradient of E2, and then use the gradient descent method of Algorithm 1 to minimize E2.
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(a) (b) (c) (d)

Figure 7: Optimal curves under E2 for M = S2 obtained by our gradient descent method with respect
to the second-order Palais metric. (a): λ = 0.01, (b): λ = 10−8, (c) and (d): λ = 0.01, 0.001, 10−4,
and 10−6. In each case the green curve shows the initial condition.

Figure 8: Evolutions of γ under the gradient of E2. The green curves are the initial conditions and
the red curves are the final states.

Shown in Figure 7 are some examples of our approach applied to different sets of points
generated randomly on S2. The pictures in (a) and (b) show examples of optimal curves for
three and five points with λs as indicated there. The remaining two panels show examples
of optimal curves obtained for fixed data points under different λs. Curves in different
colors are obtained by using different values of λ. The values of λ used in (c) and (d) are
10−2, 10−3, 10−4, and 10−6. As the value of λ increases, we can see the optimal curves
straightening and shortening into single arcs.

Figure 8 shows two examples of the iterative process by displaying the intermediate curves
also. The initial curves are shown in green, the iterations are shown in black and the final
curves are shown in red.

Asymptotics on λ: Our numerical experiments corroborate the following theoretical results
mentioned in Section 1.1:

• Let λ go to zero. When E = E1 (6), the optimal curve is the piecewise geodesic pass-
ing through the given points. When E = E2 (4), the optimal curve is a piecewise cubic
polynomial (in the sense of [NHP89]) interpolating the given set of points when E = E2.

• Let λ go to infinity. When E = E1, the optimal curve shrinks to one point in M , precisely
the Riemannian center of mass (also called Fréchet mean or Karcher mean) of the given set
of points p0, p1, . . . , pN . When E = E2, the optimal curve approaches a geodesic.
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7 Concluding remarks

We have addressed the problem of fitting a curve to data points on a closed Riemannian submani-
fold M of some Euclidean space by means of a Palais-based steepest-descent algorithm applied to
the weighted sum of a fitting-related and a regularity-related cost function. As a proof of concept,
we have used the simple regularity cost function (2) based on the first derivative. We have also
considered the more challenging case of the regularity cost function (3), whose derivative involves
the Riemannian curvature tensor on M , and for which the optimal curves are generalized cubic
splines. We have illustrated the proposed method on fitting problems in R2 and S2. In future
work, we will consider other nonlinear manifolds with applications in pattern recognition and
image analysis.

An important feature of our approach is that the discretization takes place as late as possible
in the implementation. The gradient of the cost function at a curve γ is a (continuous-time) vector
field along γ expressed by means of the Riemannian logarithm, parallel transport, covariant differ-
entiation, and covariant integrals. It is these operations that are approximated by discretization in
the algorithm implementation. The advantage of using a continuous formulation is that tools from
functional analysis become available. We are able to use the Palais metrics and, thus, simplify the
gradient vector fields only because of this continuous formulation. An alternate approach would
be to consider a discretization γ̂ of γ using Q points and discretize the function E accordingly to
obtain a new objective function Ê : MQ → R : γ̂ 7→ Ê(γ̂) that we would optimize on the finite-
dimensional product manifold MQ using, e.g., a steepest-descent method described in [AMS08].
The two approaches yield considerably different expressions for the gradient. In particular, in the
approach on Ê, the gradient of the fitting term d2(γ(ti), pi), with respect to the product Rieman-
nian metric on MQ, vanishes everywhere except at time ti, whereas with the approach proposed
here the influence of the ith fitting term is spread along the whole curve in the expression of its
gradient. Although we have not compared the results, one should expect a better performance
with the approach where the discretization is delayed until the implementation step.

A Proof of Theorem 3.1

This proof is essentially a restriction of the proof of [Kar77, Th. 1.2]. Let α be defined by
α(t) = expq(tξ). Consider the family of geodesics from p to α(t): cp(s, t) = expp(s exp−1

p α(t)).
Since the cut locus is closed [dC92, corollary 13.2.10], this expression is well defined for all t in a
neighborhood of 0 and all s ∈ [0, 1]. Denote c′p = d

ds
cp(s, t) and ċp = d

dt
cp(s, t). We know that

d(p, α(t)) = ‖c′p(s, t)‖ is independent of s. We have successively

1

2

d

dt
d2(p, α(t)) =

1

2

d

dt

〈

c′p(s, t), c
′
p(s, t)

〉

which does not depend on s,

=

〈

D

dt
c′p(s, t), c

′
p(s, t)

〉

=

〈

D

ds
ċp(s, t), c

′
p(s, t)

〉

which still does not depend on s, thus

=

∫ 1

0

〈

D

ds
ċp(s, t), c

′
p(s, t)

〉

ds

=

∫ 1

0

d

ds

〈

ċp(s, t), c
′
p(s, t)

〉

ds
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since D
ds

c′p(s, t) = 0 (geodesic property),

=
〈

ċp(1, t), c
′
p(1, t)

〉

since ċp(0, t) = 0,

=
〈

α̇(t),− exp−1
α(t) p

〉

.

Since 1
2Dd2(p, ·)(q)[ξ] = 1

2
d
dt

d2(p, α(t))
∣

∣

t=0
, the result follows.

B An extrinsic expression for the curvature tensor

The expression of the derivative of Es,2 obtained in Section 4.2 involves the Riemannian curvature
tensor of the Riemannian manifold M . When M is a Riemannian submanifold of a Riemannian
manifold N , the curvature tensor admits an extrinsic expression in terms of the second fundamental
form and of the Weingarten map, which turns out to be handy in certain cases. In this section,
we present this extrinsic expression, then we work out in detail the particular case where N is a
Euclidean space.

Let Dηξ denote the (Levi-Civita) covariant derivative of ξ along η on the embedding manifold
M , and let D denote that derivative on N . The curvature tensor R is defined by

R(ξ, η)ζ = DξDηζ − DηDξζ − D[ξ,η]ζ, (28)

where ξ, η, ζ are tangent vector fields on M and [ξ, η] denotes the Lie bracket. Given x ∈ M ,
let Px : TxN → TxM denote the orthogonal projector onto TxM . Let T⊥x M denote the normal
space to M at x, and let P⊥x : TxN → T⊥x M denote the orthogonal projector onto the normal
space T⊥x M . The shape operator (also called second fundamental form) is the object II defined
as follows: for all x ∈ M and all ξx, ηx ∈ TxM ,

II(ηx, ξx) := P⊥x Dηx
ξ, (29)

where ξ is any tangent vector field that extends ξx. This definition can be found, e.g., in [O’N83,
Cha06]. The Weingarten map is the object U defined as follows. For all x ∈ M , ηx ∈ TxM ,
vx ∈ T⊥x M ,

Uηx
(vx) := −PxDηx

v, (30)

where v is any normal vector field that extends vx. This definition can be found, e.g., in [Cha06,
p. 62]. Then the curvature tensor can be expressed as follows:

R(ξ, η)ζ = UξII(η, ζ) − UηII(ξ, ζ). (31)

Let us now assume that N is a Euclidean space. Then the projector field P can be viewed as
a matrix-valued function, the shape operator admits the expression

II(ηx, ξx) = (Dηx
P )ξx, (32)

where D now reduces to the classical derivative, and the Weingarten map takes the form

Uηx
(vx) = (Dηx

P )vx. (33)

We refer to [ATMA09] for details. These formulas are particularly useful when the projector field
P admits a simple expression.
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